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Analytical Expressions for the Power Spectral

Density of CP-OFDM and ZP-OFDM Signals†

Toon van Waterschoot∗1, Vincent Le Nir2, Jonathan Duplicy3, and Marc Moonen4

Abstract

In this letter, analytical expressions are derived for the power spectral density (PSD) of orthogonal

frequency division multiplex (OFDM) signals employing a cyclic prefix (CP-OFDM) or zero padding

(ZP-OFDM) time guard interval. Under the relatively weak assumptions that i) the data are independent

and identically distributed on all OFDM subcarriers and ii) the OFDM pulse shape is sufficiently localized

in time, simple closed-form PSD expressions can be obtained. These expressions are then compared to

existing OFDM PSD expressions and validated by inspecting the power spectra of some standardized

OFDM signals.

Index Terms

Orthogonal frequency division multiplex (OFDM), power spectral density (PSD), cyclic prefix (CP),

zero padding (ZP).

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has become a widely recognized modulation

technique for high data rate communication systems. An OFDM signal consists of a number of modulated

subcarriers, computed with an inverse discrete Fourier transform (IDFT), which are orthogonal in the

absence of a dispersive communication channel. With the aim of compensating for the intersymbol

interference (ISI) that may arise in a time-dispersive environment, a time guard interval is inserted

between successive OFDM symbols, as obtained at the output of the IDFT modulator. Traditionally, the
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time guard interval has been defined as a periodic extension of the succeeding OFDM symbol [1], resulting

in the well-known cyclic-prefix OFDM (CP-OFDM). In this way, the loss of subcarrier orthogonality in a

time-dispersive environment can be annihilated, and hence intercarrier interference (ICI) can be avoided.

However, some distinct equalization advantages (such as guaranteed symbol recovery regardless of the

channel zero locations) can be obtained if the time guard interval is padded with zeros [2], resulting in

the so-called zero-padding OFDM (ZP-OFDM).

In this letter, analytical expressions for the power spectral density (PSD) of CP-OFDM and ZP-OFDM

signals are derived, which may be useful in a variety of research applications. One of the main motivations

for deriving PSD expressions has been the need to predict the in-band and out-of-band radiation produced

by OFDM transmitters, so as to guarantee their compliance with regulatory spectrum masks [3]-[9]. More

recently, parametric models of the OFDM PSD have been used for blind estimation of the OFDM carrier

frequency offset [10] and OFDM modulation parameters [11].

The PSD of an OFDM signal depends on the characteristics of four signal operations performed at

the transmitter side: the IDFT modulation, the insertion of the (CP or ZP) time guard interval, the pulse

shaping, and the interpolation filtering. Pulse shaping is applied to limit the out-of-band radiation and

further reduce the ICI, and is typically realized by means of a time window function applied to the OFDM

symbol after the time guard interval has been inserted [8]. On the other hand, the interpolation filter serves

to bound the OFDM bandwidth before D/A conversion. Existing OFDM PSD expressions derived in [3]-

[9] implicitly rely on the assumption that either rectangular pulse shaping is applied [8],[9] or that the

influence of the interpolation filter can be disregarded [3]-[7]. Here, we derive PSD expressions that hold

for arbitrary pulse shaping and interpolation filters, under the assumption that i) the data are independent

and identically distributed (i.i.d.) on all OFDM subcarriers, and ii) the pulse shape is sufficiently localized

in time (to be defined in Section II). The second assumption indeed holds true for many pulse shapes

used in practice, while the first assumption is in practice often violated due to the use of null subcarriers.

Nevertheless, this first assumption allows us to derive surprisingly simple PSD expressions which provide

an approximation of the in-band PSD that is sufficiently accurate, even when null subcarriers are present,

for practical applications such as spectrum mask compliance monitoring and blind parameter estimation.

The letter is organized as follows. In Section II, we derive a PSD expression that is valid under the

two assumptions mentioned earlier, regardless of the type of time guard interval, pulse shaping and

interpolation filtering used. This expression is then particularized for CP-OFDM and ZP-OFDM signals,

by noting that the CP and ZP time guard interval are merely different pulse shapes. The obtained PSD

expressions are validated in Section III by comparing these with existing PSD expressions and inspecting
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the power spectra of standardized CP-OFDM and ZP-OFDM signals. Finally, Section IV concludes the

letter.

II. DERIVATION OF PSD EXPRESSIONS

In an OFDM transmitter, a discrete-time baseband signal x[n] is generated by IDFT modulation, time

guard interval insertion, and pulse shaping (see, e.g., [12]),

x[n] =

∞
∑

l=−∞

(

N−1
∑

k=0

ck,lgP[n− lM ]ej(2π/N)k(n−lM)

)

, n ∈ Z. (1)

Here, n, k, and l denote the discrete time index, the discrete frequency index, and the OFDM symbol

index, respectively, N and M denote the number of subcarriers and the symbol length, respectively, gP[n]

denotes the pulse shaping window, and ck,l represents the complex-valued data symbol (taken from a finite

alphabet constellation) that is modulated on the kth subcarrier of the lth symbol. Note that we focus here

on the baseband representation, i.e., the complex envelope of the real-valued transmitted OFDM signal.

An analog baseband signal x(t) is then obtained by feeding the discrete-time baseband signal x[n] to a

D/A converter equipped with an interpolation filter gI(t) [8],

x(t) =

∞
∑

n=−∞

x[n]gI(t− nTs) (2)

=

∞
∑

n=−∞

[

∞
∑

l=−∞

(

N−1
∑

k=0

ck,lgP[n− lM ]ej(2π/N)k(n−lM)

)]

gI(t− nTs) (3)

where Ts denotes the sampling interval employed in the OFDM transmitter and t ∈ R represents

continuous time.

The PSD of the analog baseband signal x(t) is defined as [13, Ch. 6]

Px(f) = lim
T →∞

(

1

T
E
{

|F {xT (t)}|
2
}

)

(4)

with E{·} and F{·} denoting the expectation operator and the Fourier transform operator, respectively,

and xT (t) a truncated version of x(t) in the time interval (−T /2,T /2). Existing OFDM PSD expressions

[3]-[7],[9] originate from different ways of evaluating the analog baseband signal PSD in (4). However,

these are all based on the general result that the PSD of a signal of the form

x(t) =

∞
∑

i=−∞

aif(t− iT ) (5)

is given by

Px(f) =
|F (f)|2

T

[

R(0) + 2

∞
∑

m=1

R(m) cos(2πfmT )

]

(6)
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where {ai}
∞
i=−∞ is a digital data symbol sequence, assumed stationary and hence having an autocorrela-

tion function R(i,m) = R(m) , E{a∗i ai+m}, while f(t) and F (f) represent the time-domain waveform

and frequency spectrum of the analog pulse shape, respectively, and T denotes the pulse width [13, Ch.

6]. The differences in the evaluation of (4) originate from the fact that, when comparing (3) and (5),

there are different ways of deciding which part of the transmitted signal in (3) corresponds to the data

symbols ai, and which part corresponds to the pulse shape f(t). Essentially, the expressions derived

in [3]-[7] result from the choice f(t) = gP(t), with gP(t) obtained from gP[n] using a perfect (brick-

wall) interpolation filter gI(t). The approach in [9] is based on choosing f(t) = gI(t) and assuming a

rectangular pulse shape gP[n].

We will evaluate the transmitted baseband signal PSD in (4) using an approach similar to the approach

in [9], yet without making strict assumptions on the type of pulse shape used (we only make an assumption

on the time localization of the pulse shape, cf. infra). By defining the mapping

an =

∞
∑

l=−∞

(

N−1
∑

k=0

ck,lgP[n− lM ]ej(2π/N)k(n−lM)

)

(7)

f(t) = gI(t) (8)

we obtain from (5)-(6) with i = n and T = Ts that

Px(f) =
|Gi(f)|

2

Ts

[

R(0) + 2

∞
∑

m=1

R(m) cos(2πfmTs)

]

(9)

It should be noted that the sequence {an} as given in (7) is in general a cyclostationary process. In

this case, (9) is an expression for the time-averaged PSD with R(m) the time-averaged autocorrelation

function of {an}, where time averaging is performed over one cyclic period [9],[14, Ch. 2]. In general,

we can write the (time-varying) autocorrelation function of {an} as

R(n,m) = E

{[

∞
∑

l=−∞

(

N−1
∑

k=0

c∗k,lgP[n− lM ]e−j(2π/N)k(n−lM)

)]

×

[

∞
∑

l′=−∞

(

N−1
∑

k′=0

ck′,l′gP[n+m− l′M ]ej(2π/N)k′(n+m−l′M)

)]}

. (10)

We will now simplify this expression by making two assumptions.

Assumption 1: If we assume that the data symbols ck,l are i.i.d. for all subcarriers, then it follows that

R(n,m) is nonzero only if k = k′ and l = l′, and hence (10) reduces to

R(n,m) = σ2
c

∞
∑

l=−∞

(

N−1
∑

k=0

ej(2π/N)kmgP[n− lM ]gP[n+m− lM ]

)

(11)
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where σ2
c denotes the variance of the data symbols ck,l. Moreover, we can exploit the identity

N−1
∑

k=0

ej(2π/N)km =







N, for m = iN (i ∈ Z)

0, for m 6= iN (i ∈ Z)
(12)

to rewrite the autocorrelation function in (11) as

R(n,m) =















Nσ2
c

∞
∑

l=−∞

gP[n− lM ]gP[n+ iN − lM ], for m = iN (i ∈ Z)

0, for m 6= iN (i ∈ Z)

(13)

Note that a similar result was obtained in [12]. It can be seen from (13) that in general, R(n,m) is a

periodic function (with period M ) and hence {an} in (7) is indeed a cyclostationary process.

Assumption 2: If we assume that the pulse shape is sufficiently localized in time, in the sense that

gP[n] = 0, n /∈ {0, . . . , 2N − 1} (which is the case for many pulse shapes that are used in practical

OFDM systems), the expression in (13) reduces to

R(n,m) =



























Nσ2
c

1
∑

l=−1

(gP[n− lM ])2, for m = 0

Nσ2
cgP[n]gP[n±N ], for m = ±N

0, for m 6= 0,±N

(14)

and the time-averaged autocorrelation function can then be calculated as

R(m) =



































Nσ2
c

M

M−1
∑

n=0

1
∑

l=−1

(gP[n− lM ])2, for m = 0

Nσ2
c

M

M−1
∑

n=0

gP[n]gP[n±N ], for m = ±N

0, for m 6= 0,±N

(15)

which can be rewritten as

R(m) =



































Nσ2
c

M

2N−1
∑

n=0

(gP[n])
2, for m = 0

Nσ2
c

M

M−1
∑

n=N

gP[n]gP[n−N ], for m = ±N

0, for m 6= 0,±N

(16)

We can now combine (9) and (16) to obtain an analytical expression for the analog baseband signal

PSD that is generally applicable under the two assumptions mentioned above, and which is given as

Px(f) =
N |σcGi(f)|

2

MTs

[

2N−1
∑

n=0

(gP[n])
2 + 2cos

(

2πf

∆f

)M−1
∑

n=N

gP[n]gP[n−N ]

]

(17)
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where the subcarrier separation is defined as ∆f = 1/(NTs). This essentially means that, within the

bandwidth of the interpolation filter, the PSD of an OFDM signal behaves as a cosine function w.r.t.

frequency, with the cosine maxima occuring at the subcarrier frequencies (and beyond).

The result in (17) is valid regardless of the type of time guard interval (CP or ZP). However, in case of

a ZP time guard interval, the insertion of M −N zeros between successive OFDM symbols is equivalent

to using a pulse shape that spans only N samples, i.e., gP[n] = 0, n /∈ {0, . . . , N − 1}. Hence, for the

ZP-OFDM case, the PSD expression in (17) can be simplified to

P (ZP)
x (f) =

N |σcGi(f)|
2

MTs

N−1
∑

n=0

(gP[n])
2. (18)

III. VALIDATION OF PSD EXPRESSIONS

In this section, we validate the PSD expressions in (17) and (18) by comparing these with existing

expressions, and by inspecting the power spectra of two standardized OFDM signals.

A. Comparison with Existing PSD Expressions

Most existing PSD expressions are derived by summing the power spectra of individual subcarriers,

under the assumption that the data at each subcarrier are statistically independent and mutually orthogonal

[6]. This leads to the general PSD expression found in [5]-[8],[10],

Px(f) =
σ2
c

MTs

N−1
∑

k=0

∣

∣

∣
Gp [(f − k∆f )MTs]

∣

∣

∣

2
(19)

and to the specific PSD expressions found in [3]-[5],[7] for the case when rectangular pulse shaping is

applied,

Px(f) =
σ2
c

MTs

N−1
∑

k=0

(

sinc [(f − k∆f )MTs]
)2

(20)

where

sinc(α) =
sin(πα)

πα
. (21)

As pointed out in [8], expression (20) provides an approximation to the true PSD. Indeed, the spectrum

of a sampled rectangular window is not a sinc function, but rather a periodic sinc function (also known

as “aliased sinc function” or “Dirichlet kernel”), defined as

sincM (α) =











(−1)α(M−1), for α ∈ Z

sin(πMα)

M sin(πα)
, for α /∈ Z.

(22)
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As a consequence, the expression in (20) is only valid in the limiting case when Ts → 0, which explains

why interpolation filtering is disregarded in [3]-[7]. For the more realistic case when Ts 6= 0, the influence

of the interpolation filter gI(t) should be taken into account, which leads to the alternative PSD expression

found in [8],

Px(f) =
|σcGi(f)|

2

MTs

N−1
∑

k=0

(

MsincM [(f − k∆f )Ts]
)2

. (23)

The equivalence between the PSD expressions in (17) and (23) can be shown by using the PSD expression

derived in [10] as an intermediate result. By exploiting the fact that the autocorrelation function of a

sampled rectangular window is a sampled triangular function, it is straightforward to show that the

expression in (23) is equivalent to the expression found in [10], in which the interpolation filter gI(t) is

implicitly assumed to be a perfect (brick-wall) filter,

Px(f) =
σ2
c

MTs

N−1
∑

k=0

(

M−1
∑

m=−M+1

(M − |m|) cos [2π(f − k∆f )mTs]

)

(24)

By changing the order of the summations in (24), the expression in (24) can be rewritten as follows,

using the identity in (12),

Px(f) =
Nσ2

c

MTs

[

M + 2(M −N) cos

(

2πf

∆f

)]

(25)

which is obviously equivalent to (17) in case of a rectangular pulse shape and a perfect (brick-wall)

interpolation filter.

B. Example Power Spectra of Standardized OFDM Signals

1) Example 1 – IEEE 802.11a WLAN Signal: Two WLAN OFDM signals have been simulated with

specifications taken from the IEEE 802.11a standard [15], i.e., N = 64 subcarriers with a 16-QAM

modulation on each subcarrier, a CP time guard interval of 16 samples (resulting in a symbol length of

M = 80 samples), and a bandwidth of fs = 20 MHz. Pulse shaping is performed with a time-domain

window as suggested in [15, Sec. 17.3.2.5], i.e.,

gP[n] =



















1, for n = 1, . . . , 79

0.5, for n = 0, 80

0, for n 6= 0, . . . , 80

(26)

and a 20th order linear-phase finite impulse response (FIR) interpolation filter gI(t) is used. The first

WLAN signal has no null subcarriers, while the second WLAN signal has one null subcarrier at DC

and 11 null subcarriers at the band edges, as specified in [15, Sec. 17.3.2.5]. The PSD of these signals
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Fig. 1. Example 1: PSD curves for IEEE 802.11a WLAN signal, (a) full view, (b) zoom on upper band edge (NS = null

subcarriers).

has been estimated using the averaged periodogram technique, where averaging is performed over 1000

OFDM symbols. These PSD estimates are shown in Fig. 1(a), together with the PSD curve obtained by

evaluating the analytical expression in (17) using the given signal specifications. A zoom on the upper

band edge of the WLAN PSD curves is displayed in Fig. 1(b). From these figures, it can be seen that the

PSD curve corresponding to the analytical expression in (17) closely follows the estimated PSD curve

for the simulated signal without null subcarriers. The estimated PSD curve for the simulated signal with

null subcarriers corresponds remarkably well to the analytical PSD curve, except in the frequency region

where the null subcarriers are located.

2) Example 2 – ECMA-368 UWB Signal: Again, two OFDM signals have been simulated with and

without null subcarriers, yet with the signal specifications taken from the ECMA-368 UWB standard

[16]. These signals have N = 128 QPSK-modulated subcarriers, of which the DC subcarrier and the

outer 5 subcarriers are fixed to null in the second OFDM signal, as specified in [16, Sec. 10.10.1]. The

time guard interval is in this case a ZP interval of 37 samples, such that the symbol length M = 165,

and the bandwidth equals fs = 528 MHz. The pulse shape gP[n] corresponds to a length-N sampled

rectangular window, and the interpolation filter is again a 20th order linear-phase FIR filter.

The PSD curves for the UWB OFDM signals are shown in Figs. 2(a) and 2(b). Here also there is

a clear correspondence between the analytical PSD curve and the estimated PSD curves without null
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Fig. 2. Example 2: PSD curves for ECMA-368 UWB signal, (a) full view, (b) zoom on upper band edge (NS = null subcarriers).

subcarriers and with null subcarriers, outside of the null subcarriers frequency region.

IV. CONCLUSION

In this letter, we have proposed simple yet accurate analytical expressions for the PSD of CP-OFDM and

ZP-OFDM signals, which explicitly depend on the pulse shape and interpolation filter characteristics, and

are based on two assumptions. While the second assumption on the time localization of the pulse shape

is valid for many standardized OFDM signals, the first assumption on the independent and identical

distribution of the subcarrier data is often violated due to the use of null subcarriers. However, from

simulation examples it appears that even in the presence of null subcarriers, the analytical PSD expressions

provide a remarkably good approximation to the PSD estimated from the OFDM data.
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