Jamming mitigation in cognitive radio networks
using a modified Q-learning algorithm

Feten Slimeni*T, Bart Scheers’, Zied Chtourou* and Vincent Le Nir
*VRIT Lab - Military Academy of Tunisia, Nabeul, Tunisia
fcIss Departement - Royal Military Academy (RMA), Brussels, Belgium
Email: {feten.slimeni, ziedchtourou} @gmail.com, {bart.scheers, vincent.lenir} @rma.ac.be

Abstract—The jamming attack is one of the most severe
threats in cognitive radio networks, because it can lead to network
degradation and even denial of service. However, a cognitive
radio can exploit its ability of dynamic spectrum access and its
learning capabilities to avoid jammed channels. In this paper,
we study how Q-learning can be used to learn the jammer
strategy in order to pro-actively avoid jammed channels. The
problem with Q-learning is that it needs a long training period
to learn the behavior of the jammer. To address the above
concern, we take advantage of the wideband spectrum sensing
capabilities of the cognitive radio to speed up the learning process
and we make advantage of the already learned information
to minimize the number of collisions with the jammer during
training. The effectiveness of this modified algorithm is evaluated
by simulations in the presence of different jamming strategies and
the simulation results are compared to the original Q-learning
algorithm applied to the same scenarios.

Keywords— Cognitive radio network, jamming attack, markov
decision process, Q-learning algorithm

I. INTRODUCTION

Cognitive Radio (CR) technology is recognized as a
promising solution to overcome the problems of scarcity and
inefficient utilization of the radio spectrum. The CR associates
learning and reconfigurability abilities in order to perform a
real time adaptation to the environment modifications [1], [2].

However, in addition to common wireless communica-
tion vulnerabilities, the cognitive radio networks (CRNs) are
susceptible to other kinds of threats related to the intrinsic
characteristics of this technology [3]. Recently, research works
have been done in the area of CRN security and especially
the topic of opportunistic spectrum access in the presence of
jammers.

The jamming attack is one of the major threats in CRNs
because it can lead to network degradation and even denial of
service (DoS). Furthermore, the jammer doesn’t need to be a
member of the network or to collect information about it to
launch such attack. The jammers can be classified according
to the following criteria:

1) Spot/Sweep/Barrage jamming:

Spot jamming consists in attacking a specific frequency,
while a sweep jammer will sweep across an available fre-
quency band. A barrage jammer will jam a range of frequencies
at once.

2) Single/Collaborative jamming:

The jamming attack can be done by a single jammer or
in a coordinated way between several jammers to gain more
knowledge about the network and to efficiently reduce the
throughput of the cognitive users.

3) Constant/Random jamming:

The jammer can either send jamming signals continuously
on a specific channel or alternate between jamming and
sleeping.

4) Deceptive/Reactive jamming:

A deceptive jammer continuously transmits signals in order
to imitate a legitimate or primary user. A reactive jammer
transmits only when it detects busy channel to cause collisions.

More details about the classification of CRN jamming
strategies are given in [4]. This reference deals with the prob-
lem of spectrum coordination between CRs in the presence of
jammers. CRNs are characterized by dynamic spectrum access
(DSA) and by mainly distributed architectures which make
it difficult to implement effective jamming countermeasures.
Therefore, some coding techniques have been developed to
mitigate the effects of this attack in the transmitted signal. For
example, the authors in [5] combine random linear network
coding with random channel hopping sequences to overcome
the jamming effect on the transmitted control packets. Their
proposed algorithm is called jamming evasive network cod-
ing neighbor discovery algorithm (JENNA). Another coding
approach is presented in [6], it consists in a hybrid forward
error correction (FEC) code to mitigate the jamming impact
on the transmitted data. The code is a concatenation of the
raptor code to recover data loss due to jamming, and the
secure hash algorithm (SHA-2) to verify the integrity of the
received data. Instead of using coding technique to repair the
already jammed data, an approach presented in [7] consists
in a multi-tier proxy based cooperative defense strategy. It
exploits the time and spatial diversity of the CRs to deal
with collaborative jamming attack in an infrastructure based
centralized CRN. Furthermore, the concept of honeynode has
been shown in [8] to be effective in deceiving jammers about
the transmitting nodes. In this reference, a single honeynode
is dynamically selected for each transmitting period, to act as
a normal transmitting CR in order to attract the jammer to a
specific channel.

Another class of anti-jamming approaches is based on the
CR ability of changing its operating frequency while main-
taining continuous and proper operation. This ability can be
exploited to overcome jamming attacks since the CR can hop

to avoid jammed channels. In this context, markov decision
process (MDP) has been widely exploited as a stochastic
tool to model the CR decision making problem in jamming
scenarios with fixed strategy, i.e. assuming that the jammer
preserves the same tactic. The CR may use reinforcement
learning (RL) algorithms to solve the MDP by learning how to
take the best decisions to keep its communication unjammed.
The Q-learning is the most common RL algorithm applied
in CRN jamming study to deal with imperfect knowledge
about the environment and the jammer’s behavior. However,
the application of this technique should go through two phases:
the first one is a training phase during which the agent runs
the Q-learning algorithm and waits until its convergence to get
the optimal defense strategy. The next phase is the exploitation
of the learned strategy during the real time working of the
agent. An off-line application of this technique seems to be
inefficient for the CR, because until the convergence of the
Q-learning algorithm other jammers may emerge and legacy
spectrum holders (primary users) activity may change. During
the training phase of the Q-learning algorithm, the CR can
already exploit the communication link, denoted as on-line
learning, but it may lose many data packets because of the
random learning trials.

The work developed in this paper is mainly based on [9]
and [10]. In the first paper, the authors start by deriving a
frequency hopping defense strategy for the CR using an MDP
model under the assumption of perfect knowledge, in terms of
transition probabilities and rewards. Further, they propose two
learning schemes for CRs to gain knowledge of adversaries
to handle cases of imperfect knowledge: maximum likelihood
estimation (MLE), and an adapted version of the Q-learning
algorithm. However the modified Q-learning algorithm is given
without discussion or simulation results. The second paper
gives an MDP model of the CRN jamming scenario and
proposes a modified Q-learning algorithm to solve it. Again,
as in the previous reference no details are given on how to
implement the described theoretical anti-jamming scheme.

In this paper, we aim to provide a modified version of the
Q-learning algorithm to speed up the training period and to
make it appropriate for on-line learning. We start in the next
section by explaining how the markov decision process (MDP)
can model the scenario of CRN under fixed jamming strategy.
In section III, we present the standard Q-learning algorithm
and we discuss its application to find an anti-jamming strategy.
In the remainder of this paper, we propose an MDP model
to the CRN jamming scenario and we present a modified Q-
learning version. Simulation results are given under different
jamming strategies and compared to the original Q-learning
algorithm implemented in the same scenario.

II. THE MARKOV DECISION PROCESS

The markov decision process (MDP) is a discrete time
stochastic control process. It provides a mathematical frame-
work to model the decision problem faced by an agent to
optimize his outcome. The goal of solving the MDP is to find
the optimal strategy for the considered agent. In CRN jamming
scenario, it means finding the best actions (to hop or to stay)
for the CR to avoid the jammed frequency.

An MDP is defined by four essential components:

e A finite set of states S.

e A finite set of actions A.

o P,s,s') = Pr(sgs1 = §'lst = s,a; = a) the
transition probability from an old state s to a new
state s’ when taking action a.

e Ry(s,s’) the immediate reward after transition to state
s’ from state s when taking action a.

The process is played in a sequence of stages (timesteps). At
every stage, the agent is in one state and at the end of that
stage he selects an action, then the process moves to a new
random state with the corresponding transition probability. The
agent receives a payoff, also called reward, which depends on
the current state and the taken action. He continues to play
stages until finding the optimal policy, which is the mapping
from states to actions that maximizes the state values. The
standard family of algorithms used to calculate this optimal
policy requires storage of two arrays indexed by state:

e State value V(s), which contains a real value cor-
responding to the discounted sum of the rewards
received when starting from each state.

e Policy 7(s) which gives the action taken in every state.

Every MDP has at least one optimal policy 7* that is stationary
and deterministic. 7* is called stationary since it does not
change as a function of time and it is called deterministic
since the same action is always chosen whenever the agent is
in one state s. At the end of the algorithm, 7* will contain the
optimal solution and V'(s) will contain the discounted sum of
the rewards to be earned by following that policy from state
s.

Markov decision processes can be solved via dynamic
programming (DP) when we have perfect knowledge about
transition probabilities and the reward of every action. How-
ever in real situations of dynamic environment and imperfect
knowledge about transition probabilities and rewards, MDP is
solved using reinforcement learning (RL) algorithms [11].

Dynamic programming (DP) techniques require an explicit,
complete model of the process to be controlled. It is known
as model based techniques, since we have to reconstruct an
approximate model of the MDP and then solve it to find the
optimal policy. The most popular DP techniques is the value
iteration algorithm which consists in solving the following
Bellman equation until convergence to the optimal values
V*(s), from which we can derive the corresponding optimal
policy:

Q(s,a) = Ru(s,s') +7 ZPa(S,s’)V*(s') (1)

V*(s) = maz.Q(s, a) @)

where v is the discount factor that controls how much effect
future rewards have on the optimal decisions. Small values of ~y
emphasizing near-term gain and larger values giving significant
weight to later rewards. Equation (1) is repeated for all possible
actions in each state s. It calculates the sum of the immediate
reward R,(s,s’) of the taken action and the expected sum
of rewards over all future steps. Then, equation (2) gives
the optimal action which corresponds to the maximum V(s)
value. The value iteration algorithm reaches convergence when

[Vig1(s) — Vi(s)] < € is met for all states s, where V,,(s)
corresponds to the calculated V (s) value at timeslot n.

However, in real scenarios the CR is acting in hostile
and dynamic environment without complete information. It
doesn’t know either the resulting new state after taking an
action or the reward/cost of its action. For example, hopping to
another frequency may lead to jamming situation or successful
transmission. This situation can be defined as a reinforcement
learning (RL) problem, in which an agent wanders in an
unknown environment and tries to maximize its long term
return by performing actions and receiving rewards [12].
Therefore, the CR should use learning algorithms to learn PU’s
and jammer’s activities. After learning the jammers policy, it
can predict the next action of the jammer and plan its next
course of action to avoid jammed channels.

III. THE Q-LEARNING ALGORITHM

Learning algorithms can be used as a model-free simulation
tool for determining the optimal policy 7* without initially
knowing the action rewards and the transition probabilities.
Autonomous RL is completely based on interactive experience
to update the information step by step, and based on this derive
an estimate to the optimal policy. The most popular RL method
is the Q-learning algorithm, which is an extension to the value
iteration algorithm to be applied in non deterministic markov
decision processes.

As first introduced by Watkins in [13] 1989, the Q-learning
algorithm is a simple way for agents to learn how to act
optimally by successively improving its evaluations of the
quality of different actions at every state. It consists in approx-
imating the unknown transition probabilities by the empirical
distribution of states that have been reached as the process
unfolds. The goal is finding a mapping from state/action pairs
to Q-values. This result can be represented by a matrix of N
lines, where N, is the number of states s, and N, columns
corresponding to possible actions a. The Bellman equation (1)
is replaced in this algorithm by an iterative process; at every
timeslot the algorithm measures the feedback rewards of taking
an action « in a state s, and updates the corresponding Q(s, a):

Q[S, a] A Q[Sva] +a [Ra(sa Sl) + Y maxaQ(Slv a) - Q[Sv(aé]%

which gives:

Qls,a] + (1 — a)Q[s,a]l + a[Ru(s,8") +v maz,Q(s', a))
4
where 0 < a <1 is a learning rate that controls how quickly
new estimates are blended into old estimates.

The Q-value is a prediction of the sum of the discounted
reinforcements (rewards) received when performing the taken
action and then following the given policy thereafter. It can be
considered as a measure of the goodness of that action choice.

The Q-learning algorithm updates the values of Q(s,a)
through many episodes (trials) until convergence to optimal
Q* values; this is known as the training/learning stage of the
algorithm. Each episode starts from a random initial state s;
and consists on a sequence of timeslots during which the agent
goes from state to another and updates the corresponding ()
value. Each time the agent reaches the goal state, which have
to be defined depending on the scenario, the episode ends

and he starts a new trial. The convergence to the optimal Q*
matrix requires visiting every state-action pair as many times as
needed. In simulation, this problem is known as the exploration
issue. Random exploration takes too long to focus on the best
actions which leads to a long training period of many episodes.
Furthermore, it does not guarantee that all states will be visited
enough, as a result the learner would not expect the trained
@ function to exactly match the ideal optimal @* matrix for
the MDP [14]. The training phase of the Q-learning process
is described in algorithm 1 [15].

Two main characteristics of the standard Q-learning algo-
rithm are: (i) it is said to be an asynchronous process since
at each timeslot the agent updates a single Q(s,a) value
(one matrix cell), corresponding to his current state s (line
s) and his action a (column a) taken at this timeslot [16]. (ii)
The Q-learning method does not specify what action a the
agent should take at each timeslot during the learning period,
therefore it is called OFF-policy algorithm allowing arbitrary
experimentation until convergence to stationary Q values [17].
The optimal @* matrix resulting from the learning period
will be exploited by the agent as the best policy. During the
exploitation phase, when he is in a state s, he has to take the
action corresponding to the maximum value in the matrix line

Q*(s,:).

In previous sections, we have explained the MDP and
the Q-learning algorithm tools commonly used to model and
solve the CRN scenario under static jamming strategy. The
CR can apply the Q-learning algorithm to learn the jammer’s
behavior, but it have to wait for a long training period before
getting the optimal anti-jamming strategy. Moreover, as the
CR has to try random actions before the convergence of the
Q-learning algorithm, it is not suitable to do learning in an
operational communication link because the CR may loss
many transmitted packets. As a solution to these challenges,
we propose in the next section a modified version of the Q-
learning algorithm, and we will denote this version as ON-
policy synchronous Q-learning (OPSQ-learning) algorithm.

Algorithm 1 Pseudocode of the Q-learning algorithm

Set the v parameter, and the matrix R of environment
rewards.
Initialize the matrix Q as a zero matrix.
for each episode do
Select a random initial state s = s;.
while the goal state hasn’t been reached do
Select one action a among all possible actions for the
current state.
Using this possible action, consider going to the next
state s.
Get maximum () value for this next state based on all
possible actions maz,(Q(s’, a)).
Compute: Q(s,a) = Ru(s,s") + v maz,(Q(s',a))
Set the next state as the current state s = s’.
end while
end for

IV. THE ON-POLICY SYNCHRONOUS Q-LEARNING
ALGORITHM

We will start by defining a markov decision process to
model the CR’s available states and actions, with the con-
sideration of unknown transition probabilities and unknown
immediate rewards of the taken actions. Then, we will present
a modified version of the Q-learning algorithm that we have
implemented to solve the defined MDP model.

A. Markov decision process model

We consider a fixed jamming strategy to solve the decision
making problem from the side of the CR trying to find an anti-
jamming strategy.

Assume there are M available channels for the CR and there
is a jammer trying to prevent it from an efficient exploitation of
these channels. As a defense strategy, the CR have to choose
at every timeslot either to keep transmitting over the same
channel or to hop to another one. The challenge is to learn
how to escape from jammed channels without scarifying a long
training period to learn the jammer’s strategy. Lets define the
finite set of possible states, the finite set of possible actions at
each state and the resultant rewards after taking these actions.

The state of the CR is defined by a pair of parameters:
its current operating frequency and the number of successive
timeslots staying in this frequency. Therefore, its state at a
timeslot 4 is represented by the pair s; = (f;, k), where
fi is its operating frequency at this timeslot ¢ and & is the
number of successive timeslots using this frequency. We have
opt for mixing spatial and temporal properties in the state space
definition to get a Markovian evolution of the environment.

At every state, the CR should choose an action to move to
another state, which means that it has to choose its future fre-
quency. Therefore, we define its possible actions as a set of M
actions, which are the M available channels: { f1, fa,..., far }-
An example of the) matrix composed by these states and
actions is given in Table L.

Assume the reward is zero R,(s,s’) = 0 whenever the
new frequency after choosing the action «a is not jammed, and
R,(s,s") = —1 when the CR takes an action a resulting to a
jammed frequency. We consider the jammed state as a failure
and a situation that should be avoided.

B. The learning process

We present in algorithm 2, a modified version of the Q-
learning process denoted as the ON-policy synchronous Q-
learning (OPSQ-learning), because of the two following mod-
ifications: (i) We have replaced the OFF-policy characterizing
the standard Q-learning algorithm by an ON-policy, i.e. at each
timeslot, the CR follows a greedy strategy by selecting the
best action corresponding to maz,Q(s,a) instead of trying
random action. (ii) We have exploited the CR ability of doing
wideband spectrum sensing, to do synchronous update of M
Q-values instead of the asynchronous update of only one cell
in the () matrix, i.e. the CR after going to a next state can,
using its wideband sensing capability, detect the frequency
of the jammer at that moment and hence do an update of
all state-action pairs, corresponding to the possible actions
which can be taken from its previous state s (update of all

Algorithm 2 Pseudocode of ON-policy synchronous Q-
learning

Set v and ¢ values.
Initialize matrix ()1 to zero matrix.
Select a random initial state s = s
Set n=1, timeslot=1
while n<Nepisodes do
Qn-1=Qn, Ry(s,8") =0V a,s,s
Calculate the learning coefficient o« = 1/timeslot
Select an action a verifying maz,Q,—1(s,a)
Taking a, go to the new state s’ at frequency f’
Find the new jammed frequency fjq., %(due to wideband
spectrum sensing)
Update all), values of the previous state s by doing:
fori=1: M do
observe the fictive state s, of taking fictive action f;
if fj, = fjam then
Rﬂ (87 Stmp) =-1
else
Ry, (s, stmp) =0
end if
Compute Qn(sa fz) = (1 - a)anl(Sa fz) +
O‘[Rfi (57 Stmp) + v maxaQn—l(Stmpa a)]
end for
if f' = fjam %(end of episode) then
n=n+1
timeslot=1
Select a random initial state s = s
else
s=y¢'
timeslot=timeslot+1
end if
if (abs(Qn(s,a) — Qn-1(s,a)) <€)V s,a then
break
end if
end while

columns of the () matrix line Q(s,:)). Due to the second
modification (the synchronous Q-values update), the modified
Q-learning algorithm is no longer a model-free technique
but it can be seen as a model-based technique, i.e. the CR
can learn without actually apply the action. To evaluate the
effectiveness of the proposed solution, we have applied both
the standard version of the Q-learning algorithm (characterized
by OFF-policy and asynchronous update) and the modified
ON-policy synchronous Q-learning algorithm to the described
MDP model. Note that in this algorithm, our episode starts
from a random frequency, going from one state to another by
taking the best action at every timeslot, and ends whenever
the CR goes to a jammed frequency. The next section presents
the simulation results in the presence of various jamming
strategies.

V. SIMULATION RESULTS

We have considered in the simulations four available fre-
quencies (M = 4) for the CR. We have implemented both the
standard and the modified versions of the Q-learning algorithm,
under sweeping and reactive jamming strategies.

We started by the implementation of the standard version of

Q-learning algorithm. We found, by averaging over many sim-
ulations, that it takes about one hundred episodes to converge
to the matrix Q*. Then, we have implemented the modified
Q-learning version (OPSQ-learning) and we give the results
in the following paragraphs. The following figures display the
anti-jamming strategy in the exploitation phase, after running
the learning algorithm. We are using the red color to indicate
the jammed frequencies and the blue color to indicate the CR
frequencies for an exploitation period of twenty timeslots.

A. Scenario with a sweeping jammer

As a first scenario, we consider a jammer sweeping over the
available spectrum frequencies by attacking at each timeslot
one frequency. The OPSQ-learning algorithm converges after
only one or two episodes depending on the initial state. The Q*
matrix is given in Table 1. The strategy given by this resulting
Q* matrix is shown in Fig. 1, when the CR starts as initial
random state s; from the frequencies fo and f3 respectively.

TABLE I: The Q* matrix in a sweeping jammer scenario

State \ Action 1 fo /3 fa
7D 0 0 [-08356 | 0
(F1.2) 0 0 0 | -06768
(1.3) 05770 | 0 0 0
§)) 0 [0382 0 0
7D 0 T 0 0
(f1,1) 0 0 0 0

Current frequency

—= R W

1 3 =) 7 9 " 13 15 17 19
Timeslats

(@) s1 = (f2,1)

Current frequency

- MW B

1 3 5 7 9 1" 13 15 17 19
Timeslats

(b) s1=(f3,1)

Fig. 1: Exploitation of the learned policy against a sweeping
jammer

B. Scenario with a sweeping jammer attacking the same
frequency for two successives timeslots

We consider in this scenario a jammer with a slower
sweeping rate, e.g. a sweeping jammer attacking the same
frequency for two successives timeslots. We get with the
OPSQ-learning that the CR always succeeds after three or
four episodes to learn how to avoid the jammed frequencies,
by following the policies illustrated in Fig. 2 if he starts
respectively from the frequencies fo and fs as initial state
S1.

Current frequency

- R W e

1 3 5 7 9 1" 13 15 17 12
Timeslats

(a) 51 = (f271)

- R oW e

Current freguency

1 3 5 7 9 1 13 15 17 12
Timeslats

(b) S1 = (f371)

Fig. 2: Exploitation of the learned policy against a jammer
attacking the same frequency for two timeslots

—

—|arnrmer

- R W e

Current frequency

1 3 5 7 9 1" 13 15 17 19
Timeslats

(@) s1 = (f271)

Current frequency

- R W e

1 3 5 7 9 1" 13 15 17 12
Timeslats

(b) s1 = (f3,1)

Fig. 3: Exploitation of the learned policy against a jammer
attacking the same frequency for three timeslots

C. Scenario with a sweeping jammer attacking the same
frequency for three successives timeslots

We consider now a jamming scenario with a larger sweep-
ing period, e.g. a sweeping jammer attacking the same fre-
quency for three successives timeslots. We get with OPSQ-
learning that the CR succeeds after three or four episodes
to learn how to avoid the jammed frequencies, by following
the policies illustrated in Fig. 3 starting respectively from the
frequencies fy and f3 as initial state s;.

D. Scenario with a reactive jammer

In this scenario, we consider a reactive jammer. We suppose
that this jammer needs a duration of two timeslots before
jamming the detected frequency, because it has to do the
spectrum sensing, then make the decision and finally hop to the
detected frequency. The OPSQ-learning algorithm converges
in this scenario after four episodes. The Q* matrix is given in
Table II.

According to the resulting (Q* matrix, the CR succeeds
to learn that it has to change its operating frequency every
two timeslots to escape from the reactive jammer. The learned
strategy is given in Fig. 4 when the CR starts respectively from
the frequencies f2 and fs as initial state si.

TABLE II: The @+ matrix in a reactive jammer scenario

State \ Action fi fo f3 | Ja
7D 0 [-08047 0 0
(11.2) 06986 | 0 |00
(f2,1) -1 0 010
(f22) 0 | -0681 |00
(f3,1) -1 0 010

§78) B 0 [0 [0

E. Discussion

The standard Q-learning algorithm converges after about
one hundred episodes; each episode starts from a random
frequency, going randomly from one frequency to another
taking random decisions until collision with the jammer. The
CR applying this technique have to either wait for all this
training period to get an anti-jamming strategy or to use it
during real time communication and sacrifice about hundred
lost packets.

The ON-policy synchronous Q-learning algorithm con-
verges faster than the standard Q-learning algorithm; it gives
a suitable defense strategy after about four training episodes
against sweeping and reactive jammers. This is due to the
synchronous update of all Q-values of possible actions from
a current state, which helps the CR to faster improve its
beliefs about all decisions without trying all of the actions.
Furthermore, the choice of taking at every timeslot the best

—

—arnmer

—= R W e

Current freguency

1 3 5 7 9 1 13 15 17 19
Timeslats

(a) S1 = (f27]-)

= R W

Current freguency

1 3 a 7 9 1 13 15 17 19
Timeslats

(®) s1 = (f3,1)

Fig. 4: Exploitation of the learned policy against a reactive
jammer

action (until the actual moment) promotes the real time
exploitation of the OPSQ-learning algorithm during the CR
communication. We should mention that the proposed OPSQ-
learning algorithm doesn’t optimize the entire matrix @), it just
optimizes the Q-values of state/action pairs that the CR goes
through until finding an anti-jamming strategy.

VI. CONCLUSION

In this work, we have discussed the exploitation of the
MDP model and the Q-learning algorithm to find an anti-
jamming strategy in CRNs. We have modeled the scenario
of fixed jamming strategy as an MDP model. Then, we have
proposed a modified Q-learning algorithm to solve it, we
call the proposed algorithm as the ON-policy synchronous Q-
learning (OPSQ-learning) algorithm. We have presented the
simulation results of the application of both the standard Q-
learning and the OPSQ-learning algorithm under sweeping
and reactive jamming strategies. We can conclude that the
OPSQ-learning version speeds up the learning period and can
be applied during CRN real time communication. As future
work, the presented solution will be tested in real environment
considering multiple jammers and primary users.

REFERENCES

[1] J. Mitola IIT and G.Q. Maguire Jr., “Cognitive radio: making software
radios more personal,” IEEE Personal Communications Magazine,
vol. 6, no. 4, pp. 13-18, Aug. 1999.

[2] Q.Mahmoud, Cognitive Networks: Towards Self-Aware Networks. John
Wiley and Sons, 2007.

[3] W. Alhakami, A. Mansour, and G. A. Safdar, “Spectrum Sharing
Security and Attacks in CRNs: a Review,” International Journal of
Advanced Computer Science and Applications(IJACSA), vol. 5, no. 1,
pp. 76-87, 2014.

[4] R. D. Pietro and G. Oligeri, “Jamming mitigation in cognitive radio
networks,” IEEE Network, vol. 27, no. 3, pp. 10-15, 2013.

[5] A. Asterjadhi and M. Zorzi, “JENNA: a jamming evasive network-
coding neighbor-discovery algorithm for cognitive radio networks,”
IEEE Wireless Communications, vol. 17, no. 4, pp. 24-32, 2010.

[6]

[8]

[9]

[10]

(11]

[12]
[13]
[14]

[15]

[16]

(17]

V. Balogun, “Anti-jamming performance of hybrid FEC code in the
presence of CRN random jammers,” International Journal of Novel
Research in Engineering and Applied Sciences (IJNREAS), vol. 1, no. 1,
2014.

W. Wang, S. Bhattacharjee, M. Chatterjee, and K. Kwiat, “Collabora-
tive jamming and collaborative defense in cognitive radio networks,”
Pervasive and Mobile Computing, vol. 9, no. 4, pp. 572-587, 2013.

S. Bhunia, X. Su, S. Sengupta, and F. J. Vazquez-Abad, “Stochas-
tic model for cognitive radio networks under jamming attacks and
honeypot-based prevention,” in Distributed Computing and Networking
- 15th International Conference (ICDCN ’14), pages 438-452, Coim-
batore, India, January 4-7, 2014. Proceedings.

Y. Wu, B. Wang, and K. J. Ray Liu, “Optimal defense against jamming
attacks in cognitive radio networks using the markov decision process
approach,” in GLOBECOM’10, 2010, pp. 1-5.

C. Chen, M. Song, C. Xin, and J. Backens, “A game-theoretical anti-
jamming scheme for cognitive radio networks,” IEEE Network, vol. 27,
no. 3, pp. 22-27, 2013.

C. Szepesvri and M. L. Littman, “Generalized markov decision pro-
cesses: Dynamic-programming and reinforcement-learning algorithms,”
Tech. Rep., 1996.

C. H. C. Ribeiro, “A tutorial on reinforcement learning techniques.”

C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, UK, May 1989.

G. Tesauro, “Extending Q-learning to general adaptive multi-agent
systems,” in NIPS. MIT Press, 2003.

R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge, MA, USA: MIT Press, 1998.

J. Abounadi, D. P. Bertsekas, and V. S. Borkar, “Stochastic approxi-
mation for nonexpansive maps: Application to Q-learning algorithms,”
SIAM J. Control and Optimization, vol. 41, no. 1, pp. 1-22, 2002.

E. Even-Dar and Y. Mansour, “Learning rates for Q-learning,” Journal
of Machine Learning Research, vol. 5, pp. 1-25, 2003.

