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Estimating and Tracking Wireless Channels
under Carrier and Sampling Frequency Offsets

Karel Pärlin, Taneli Riihonen, Senior Member, IEEE, Vincent Le Nir, and Marc Adrat

Abstract—This article addresses the challenge of estimating
and tracking wireless channels under carrier and sampling fre-
quency offsets, which also incorporate phase noise and sampling
time jitter. We propose a novel adaptive filter that explicitly esti-
mates the channel impulse response, carrier frequency offset, and
sampling frequency offset by minimizing the mean-square error
(MSE) and, when these are time-varying, inherently performs
tracking. The proposed filter does not have any requirements for
the structure of the waveform, but the transmitted waveform
must be known to the receiver in advance. To aid practical
implementation, we derive upper bounds for the filter’s three step
sizes. We also derive expressions for the filter’s steady-state MSE
performance, by extending the well-known energy conservation
relation method to account for the self-induced nonstationarity
and coupling of update equations that are inherent in the
proposed filter. Theoretical findings are verified by comparison
to simulated results. Proof-of-concept measurement results are
also provided, which demonstrate that the proposed filter is able
to estimate and track a practical wireless channel under carrier
and sampling frequency offsets.

Index Terms—Adaptive filtering, frequency offset, mean-
square error, steady-state analysis.

I. INTRODUCTION

OSCILLATOR inaccuracies cause two common impair-
ments in wireless systems — mismatches between trans-

mitter and receiver carrier generators result in a carrier fre-
quency offset, while mismatches between sampling clocks re-
sult in a sampling frequency offset. Both of those impairments
are further aggravated by the random fluctuations of oscillators
and the wireless propagation. The former of which causes the
frequency offsets to vary with time and the latter of which can
have equivalent negative consequences due to Doppler shift. In
many cases, time-varying frequency offsets can be damaging
or destructive to the performance of wireless systems [1], [2].

As such, estimating and compensating frequency offsets
in those cases is essential. Although not the main focus of
this work, a popular example are orthogonal frequency di-
vision multiplexing (OFDM) systems, where synchronization
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of the carrier frequency at the receiver must be performed
accurately in order to avoid loss of orthogonality between the
subcarriers. Those systems can only tolerate carrier offsets that
are a fraction of the spacing between the subcarriers without
large degradation in performance [3]–[5]. The performance of
OFDM systems can also degrade due to sampling frequency
offsets [4], [6], although this is often less significant. Various
methods for joint carrier and sampling frequency offset esti-
mation and compensation in OFDM systems exist [7]–[14],
not to mention abundant works on only either of the offsets.
However, those methods largely rely on the properties that are
strictly characteristic to OFDM and are not directly applicable
to other applications.

Carrier and sampling frequency offsets also pose a major
challenge in known-interference cancellation. The capability
to cancel known interference is a fundamental prerequisite
of physical layer security schemes that envision preventing
eavesdropping by superposing the signal of interest with some
interference that is known only to the legitimate receiver.
Perfect known-interference cancellation has been for long
assumed feasible in theoretical physical layer security works
without practical basis [15], [16]. However, lack of proper
frequency synchronization actually has a considerable negative
effect on the cancellation performance [16], [17]. This is lead-
ing to the development of interference cancellation methods
with built-in frequency synchronization [18], [19].

Frequency synchronization, as well as time synchronization,
is also a key issue in interference alignment and distributed
beamforming. Interference alignment and distributed beam-
forming envision concurrent transmissions that result in a
substantial increase in wireless network’s total capacity [20] or
an increase in range and energy efficiency [21]. In addition,
since distributed beamforming entails directing more power
in the desired direction, less is scattered in the undesired
directions, possibly increasing security [21]. However, again
the challenges in realizing the benefits of interference align-
ment and distributed beamforming include coordinating the
transmitters for distributed information sharing plus carrier and
sampling synchronization so that the transmissions combine as
necessary at the destination [22].

Bistatic radars are promising supplements to classical mono-
static systems, and they too face the challenge of synchroniza-
tion. Unlike a monostatic radar, a bistatic radar has a transmit-
ter and receiver on separate platforms which results in various
operational advantages like, e.g., additional information about
the scene, as the scattering characteristics of objects depend
strongly on the line-of-sight vectors to the transmitter and
receiver. Another advantage is the potential of cost reduction
by using one transmitter, or even illuminators of opportunity,
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and several passive receivers [23]. However, separation of the
transmit and receive platforms necessitates time and frequency
synchronization for coherent signal processing and range mea-
surement [24], [25].

Similar challenges arise in the acoustic domain. For ex-
ample, in underwater acoustic communications the use of
wideband modulation and low velocity of acoustic waves mean
that Doppler shifts have a significantly larger impact than
in the electromagnetic domain and these shifts need to be
compensated for [2]. In acoustic echo control, the sampling
frequency offsets between separate devices, if not compensated
for, can cause poor echo cancellation performance [26], [27].

It is often so that adaptive filters are used in such non-
stationary environments and consequently frequency offsets
compromise the conventional filters’ performance [28]. To that
end, various extended adaptive filters have been proposed that
are able to track certain nonstationarities or nonlinear impair-
ments. For example, least mean squares (LMS)-type gradient
descent has been used for explicit time-delay estimation [29]
as well as power amplifier distortion [30] and IQ imbalance
compensation [31]. An LMS-type adaptive algorithm has been
proposed for joint channel estimation and explicit sampling
rate correction in acoustic echo control applications [27]. The
adaptive notch filter proposed in [32] is a simple algorithm
capable of extracting a nonstationary narrowband signal buried
in noise, being essentially a carrier frequency offset tracker.
However, a single general algorithm for tracking a channel
under both carrier and sampling frequency offsets, without
specific requirements on the waveform, is still missing.

The purpose of this article is to present an efficient adaptive
algorithm for estimating and tracking a channel under time-
varying carrier and sampling frequency offsets when the
receiver knows the transmitted signal, or at least a considerable
part of it, in advance. The presented algorithm aims to be
waveform-agnostic and not strictly rely on the characteristics
of the underlying system. Hence, it is potentially applicable
to the aforementioned concepts and beyond. We provide a
thorough analysis on the optimal selection of the algorithm
parameters (viz. three step sizes) to facilitate rapid conver-
gence, and we carry out theoretical steady-state analysis for
the proposed algorithm by extending the well-known energy
conservation relation [33]. The extended relation introduces
nonstationary a priori errors for each update equation and
decouples the errors of separate update equations to account
for the algorithm’s self-induced nonstationarity. Several sup-
porting simulations are provided, which verify the theoretical
results and demonstrate that the algorithm is able to track
time-varying frequency offsets. Furthermore, proof-of-concept
measurement results are presented, which illustrate that the
algorithm is capable of explicitly estimating and tracking a
wireless channel and frequency offsets between two radios.
The proposed algorithm is positioned with regards to the
existing works and comparisons are made throughout.

The rest of this article is organized as follows. Section II
introduces a general system model and in Section III the novel
adaptive algorithm is presented for estimating and tracking the
parameters of the system model. Also, in Section III bounds
for the algorithm’s step sizes are derived. In Section IV,

expressions are derived for the steady-state mean-square error
(MSE) of the proposed algorithm, by introducing an energy
conservation relation that accounts for the algorithm’s self-
induced nonstationarity. Section V provides a comparison of
the theoretical MSE results to simulations, proof-of-concept
experimental results, and a brief comparison. Finally, conclu-
sions of the study are given in Section VI.
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Fig. 1. General system model considered in this work, focusing on the carrier
and sampling frequency offsets together with the channel impulse response
between a transmitter and a receiver. In this work we assume that the digital
transmitted signal x(n) is known to the receiver.

Notation: Small boldface letters are used to denote vectors,
and capital boldface letters are used to denote matrices, e.g.,
w and R. Furthermore, the symbol ∗ denotes Hermitian con-
jugation for vectors and complex conjugation for scalars. The
identity matrix is denoted by I and a zero vector is denoted by
the boldface letter 0, both with dimensions compatible to each
context. The iteration index is placed as a subscript for vectors
and between parentheses for scalars, e.g., wn and v(n). All
vectors are column vectors, except for two vectors, namely, the
input data vector denoted by xn and its resampled counterpart
yn, which are taken to be row vectors for convenience of
notation. Lastly, E[·] is the statistical expectation operator.

II. SYSTEM MODEL

The system model considered in this work focuses on the
time-varying sampling and carrier frequency offsets between a
transmitter and a receiver along with the channel that separates
the two as illustrated in Fig. 1. The relative sampling frequency
offset between the two devices is denoted as ηo + β(n),
where ηo = ∆T/Tx represents the fundamental time-invariant
offset with ∆T = 1/fd − 1/fx being the difference between
the sampling periods at the receiver and transmitter, fd is
the sampling frequency at the receiver, fx is the sampling
frequency at the transmitter, and β(n) is the time-varying
offset, including sampling jitter. The carrier frequency offset
is denoted as εo + φ(n), where εo denotes the fundamental
time-invariant offset εo = ωd − ωx between the receiver and
transmitter carrier frequencies, ωd is the carrier frequency at
the receiver, ωx is the carrier frequency at the transmitter, and
φ(n) is the time-varying offset, including phase noise. Lastly,
we denote the finite impulse response of the complex-valued
channel with order M as wo.
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The transmitter broadcasts a complex signal x(n) that, in
its discrete-time form, is known to the receiver. However, due
to noise, channel, and mismatches in carrier and sampling
frequencies at the transmitter and the receiver, the discrete-
time signal at the receiver becomes

d(n) = yonw
oej

∑n
i=1 ε

o+φ(i) + v(n), (1)

where v(n) is the measurement noise, yon accounts for sam-
pling x(t) with sampling frequency offset ηo + β(n) so that

yon =

[
x

(
n−M+1∑
i=1

(1 + ηo + β(i))

)
, . . . ,

x

(
n∑
i=1

(1 + ηo + β(i))

)]
(2)

and the multiplicative term ej
∑n
i=1 ε

o+φ(i) accounts for the
carrier frequency offset.

This is a general system model that is relevant, e.g., for
the following scenarios. Firstly, it holds in cases when known
training data is used to estimate the channel impulse response
and frequency offsets to improve subsequent information
demodulation. Secondly, this general system model rather
directly applies to the bistatic or multistatic radar scenario, in
which case the receiver is familiar with the transmitted signal,
but is interested in tracking the channel and frequency offsets
to estimate range/velocity. Thirdly, in case of the known-
interference cancellation scenarios, the received noise v(n) can
be considered to contain an unknown signal-of-interest, which
is uncorrelated to the known signal x(n) that is suppressed to
facilitate processing the signal-of-interest.

III. ADAPTIVE ESTIMATION AND TRACKING

In order to derive an algorithm for estimating and tracking
the parameters described in the system model, we first define
the instantaneous error of the estimation process as

e(n) = d(n)− ynwn−1e
j
∑n
i=1 ε(i−1), (3)

where wn−1, ε(n− 1), and η(n− 1) are respectively the esti-
mates of the channel’s impulse response wo, carrier frequency
offset εo, and sampling frequency offset ηo at iteration n, and
yn is the result of resampling x(n) with η(n− 1), so that

yn =

[
x

(
n−M+1∑
i=1

(1 + η(i− 1))

)
, . . . ,

x

(
n∑
i=1

(1 + η(i− 1))

)]
. (4)

The instantaneous error e(n) will contain v(n) and excess
noise from the algorithm’s operation. In case of known-
interference cancellation, the instantaneous error e(n) would
additionally contain some unknown signal-of-interest.

The aim of the adaptive filter is to update iteratively the
system model parameter estimates wn, ε(n), and η(n) so that
a nonnegative cost function J(n) is reduced successively

J(n+ 1) ≤ J(n). (5)

This will generally ensure that after every iteration, the adap-
tive filter improves its estimation of the parameters that we
are trying to model.

A. Mean-Square Error

We define the cost function as the mean-square value of the
estimation error, i.e., the MSE:

J(n) = E
[
|e(n)|2

]
= E [e(n)e∗(n)] . (6)

We opted for the MSE over other potential error measures,
e.g., weighted least squares, because of the simplicity of
the resulting algorithm. Note that in practical applications of
adaptive filtering, the use of ensemble averaging is not feasible
as we are adapting the filter in an on-line manner, based on
a single realization of the estimation error, e(n), as it evolves
across iteration index n. Therefore, during the derivation of the
proposed algorithm, we proceed by ignoring the expectation
operation in the cost function (6) as is typical to the stochastic
gradient descent method [34].

We apply the method of stochastic descent for a sequential
computation of the model parameters, using gradients of the
performance surface in seeking its minimum. Even though
only one of the estimated parameters, namely the channel
impulse response wn, is complex-valued, then in the following
derivation we also consider ε(n) and η(n) to be complex-
valued, as this will lay a clear consistent foundation for later
carrying out the steady-state analysis of the adaptive filter. In
order to accommodate for complex-valued ε(n) and η(n), we
use the real and imaginary part operators, <{z} and ={z},
where appropriate.

Thus, we obtain the gradient vector at any point on the
performance surface by differentiating the cost function (6)
with respect to the model parameter estimates, resulting in

∇J (n) =

[
∂J (n)

∂wn−1
,
∂J (n)

∂ε(n− 1)
,
∂J (n)

∂η(n− 1)

]
, (7)

where

∂J (n)

∂wn−1
= −

[
yne

j
∑n
i=1 <{ε(i−1)}

]∗
e(n), (8a)

∂J (n)

∂ε(n− 1)
= −

[
ynwn−1e

j
∑n
i=1 <{ε(i−1)}j

]∗
e(n), (8b)

∂J (n)

∂η(n− 1)
= −

[
y′nwn−1e

j
∑n
i=1 <{ε(i−1)}

]∗
e(n), (8c)

and y′n is the derivative of yn.
In practice, some simplifications can be made. First, since in

(8b) and (8c) we are only interested in the partial derivative
of a complex function e(n) with respect to the real part of
the parameters ε(n) and η(n), we can simplify the partial
derivatives relying on the Cauchy–Riemann equations [35] and
consider only the real parts of the partial derivatives so that

∂J (n)

∂ε(n− 1)
= −=

{[
ynwn−1e

j
∑n
i=1 ε(i−1)

]∗
e(n)

}
, (9b)

∂J (n)

∂η(n− 1)
= −<

{[
y′nwn−1e

j
∑n
i=1 ε(i−1)

]∗
e(n)

}
. (9c)
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B. Algorithm

We formulate the updating rules of the algorithm using the
stochastic gradient in (7) by moving in the opposite direction
of the gradient vector so that

wn = wn−1 − µw
∂J (n)

∂wn−1
, (10a)

ε(n) = ε(n− 1)− µε
∂J (n)

∂ε(n− 1)
, (10b)

η(n) = η(n− 1)− µη
∂J (n)

∂η(n− 1)
, (10c)

where w0, ε(0), and η(0) are initial guesses and µw, µε, and
µη are fixed positive step size parameters that allow to control
the convergence speed and steady-state performance of the
algorithm. For computing the gradient vector at every iteration
of the algorithm, (9b) and (9c) are to be used in (10b) and
(10c). However, for carrying out the steady-state analysis, we
will rely on the full complex-valued gradient and use (8b) and
(8c) in (10b) and (10c); while (8a) is always used in (10a).

We also acknowledge that the partial derivative (9c) with
regards to the sampling rate offset estimate η(n− 1) includes
a time derivative of the resampled signal vector. If the third
derivative of yn exists, then it is beneficial to use the centered
first-order divided difference, which has an approximation
error of order two [36, p. 172], so that

y′nwn−1 ≈
(yn+1 − yn−1)wn−1

2(1 + η(n))
. (11)

This is equivalent to considering wn−1 to be time-invariant
and taking the centered first-order difference of (ynwn−1)′.
Alternatively, the first-order backward divided difference

y′nwn−1 ≈
(yn − yn−1)wn−1

1 + η(n)
(12)

can be used, which does not require computation of yn+1 nor
the existence of the third derivative, but has an approximation
error of order one.

Algorithm 1 LMS-type frequency offsets tracking
1: procedure FO-LMS(x, d, µw, µε, µη,M )
2: w0 ← 01,M

3: ε(0)← 0, η(0)← 0
4: φ(1)← 0, t(1)← 0

5: for n← 1 to N do
6: yn ← [x(t(n)), x (t(n)− (1 + η(n− 1))) , . . . ,

x (t(n)− (M + 1)(1 + η(n− 1)))]
7: e(n)← d(n)− ynwn−1e

jφ(n)

8: wn ← wn−1 + µw
[
yne

jφ(n)
]∗
e(n)

9: ε(n)← ε(n− 1) + µε=
{[

ynwn−1e
jφ(n)

]∗
e(n)

}
10: η(n)← η(n−1) +µη<

{[
y′nwn−1e

jφ(n)
]∗
e(n)

}
11: φ(n+ 1)← φ(n) + ε(n)
12: t(n+ 1)← t(n) + (1 + η(n))
13: end for
14: end procedure

To produce yn, the sampling rate of the know signal xn
needs to be converted. Various methods exist for arbitrary sam-
pling rate conversion (SRC) [37], such as, e.g., the Lagrange
interpolator [38], but the used SRC method can be selected
independently of the proposed algorithm. If prior knowledge
of the estimation parameters is available, then this knowledge
may be used to speed up the start-up process of the algorithm.
Otherwise, w0, ε(0), and η(0) can be initialized to zero.
Conclusively, the adaptive algorithm for iteratively estimating
and tracking a wireless channel under carrier and sampling
frequency offsets is listed as Algorithm 1 and illustrated in
Fig. 2. It should be noted that in order for the algorithm to be
able to handle sampling frequency offsets, several filter taps
should be allocated, i.e., M > 1, even if the channel itself can
be modeled by a single complex coefficient. Furthermore, in
general there are several equivalent formulations for complex-
valued adaptive filters [39, p. 69] and corresponding equivalent
formulations exist also for the proposed algorithm. An open-
source implementation of the algorithm is available as part of
an adaptive filters toolkit.1
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fx(t)
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DSP
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d(t)
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DSP

x(n)e(n)
Update Equations
(10a) (10b) (10c)

SRCwn

wo

v(n)

Fig. 2. System model with the proposed adaptive filter.

C. Computational Cost
A useful property of the proposed algorithm, mainly due

to the chosen cost function, is its computational simplicity —
each iteration of the algorithm requires only a limited number
of straightforward calculations. Evaluation of the proposed
algorithm requires 12M + 16 real-valued multiplications and
14M + 7 real-valued additions at each iteration. There can be
various ways to perform specific calculations, but the resulting
overall filter complexity will be of the same order of mag-
nitude. However, these numbers do not include the arbitrary
SRC, which can be implemented in several ways with varying
complexity and accuracy. For example, Lagrange interpolation
can be implemented with computational complexity growing
linearly with the interpolation order [40].

1https://github.com/karel/gr-adapt

https://github.com/karel/gr-adapt
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D. Convergence Properties

For a given system with a fixed set of parameters, the choice
of step sizes µw, µε, and µη is effectively the only way to
affect the performance of the algorithm. For example, in order
to speed up the initial adaptation process, it might be desirable
to use large step sizes, which minimize the instantaneous
error at every iteration as much as possible, yet do not cause
the algorithm to diverge. An approximate way of finding the
upper bounds for the step sizes of an adaptive filter is by
expanding the instantaneous output error by a Taylor series
expansion [41], [39, p. 86], which in this case gives

e(n+ 1) = e(n) +
∂e(n)

∂wn−1
∆wn−1 +

∂e(n)

∂ε(n− 1)
∆ε(n− 1)

+
∂e(n)

∂η(n− 1)
∆η(n− 1) + h.o.t., (13)

where ∆wn−1, ∆ε(n − 1), and ∆η(n − 1) are the estimate
updates and h.o.t. denotes the truncated higher-order terms of
the expansion. From (10a), (10b), and (10c), by considering
the full complex-valued gradient vector, we get

∆wn−1 = µwe(n)
[
yne

j
∑n
i=1 <{ε(i−1)}

]∗
, (14a)

∆ε(n− 1) = µεe(n)
[
ynwn−1e

j
∑n
i=1 <{ε(i−1)}j

]∗
, (14b)

∆η(n− 1) = µηe(n)
[
y′nwn−1e

j
∑n
i=1 <{ε(i−1)}

]∗
, (14c)

respectively. For sufficiently small ∆wn, ∆ε(n), and ∆η(n),
the values of the higher-order terms in (13) can be neglected
and, therefore, in the following analysis we approximate the
expansion without them. Thus, evaluating the partial deriva-
tives in (13) and substituting in (14a), (14b), and (14c) yields
after direct simplification

e(n+ 1) ≈ e(n) ·
(

1− µw‖yn‖2

− µε|ynwn−1|2 − µη|y′nwn−1|2
)
. (15)

In order to ensure convergence, it is essential that the norm
of the left hand side is not greater than that of the right hand
side so that

|e(n+ 1)| ≤ |e(n)| ·
∣∣∣1− µw‖yn‖2

− µε|ynwn−1|2 − µη|y′nwn−1|2
∣∣∣. (16)

The goal in (16) is reached if the following relation holds:

|1− µw‖yn‖2 − µε|ynwn−1|2 − µη|y′nwn−1|2| ≤ 1, (17)

which in turn implies the following bounds on the choice of
the step sizes µw, µε, and µη:

0 < µw ≤
2− µε|ynwn−1|2 − µη|y′nwn−1|2

‖yn‖2
,

0 < µε ≤
2− µw‖yn‖2 − µη|y′nwn−1|2

|ynwn−1|2
,

0 < µη ≤
2− µw‖yn‖2 − µε|ynwn−1|2

|y′nwn−1|2
.

(18a)

(18b)

(18c)

However, the expressions above are merely necessary condi-
tions for the stability of the proposed algorithm. The actual
values of the step sizes to achieve stability are slightly smaller
than the derived bounds due to the used approximation, i.e.,
discarding the higher-order terms in the error expansion.

We see that all quantities in (18) are positive, so the
convergence properties depend on the slope but not on the
sign of the gradient vector, and that the upper bounds are
coupled, so the step sizes are to be selected collectively.
That is, upper bound for each step size depends on the other
two step sizes and convergence can be reached only if the
relation in (17) is satisfied. The preceding analysis on the
Taylor series expansion of the instantaneous error provides
two results. Firstly, the step size bounds that are necessary
but not sufficient conditions for the algorithm to converge
and, secondly, these bounds can potentially be used to derive
a normalized variant of the algorithm. As is, the adaptive
filter assumes fixed step sizes, but an approach could also be
developed that varies the step sizes to optimize convergence
speed and subsequent steady-state performance.

E. Comparison
The application-specific methods for estimating a wireless

channel and frequency offsets typically require the waveform
to have a certain structure. The most general of those tech-
niques aims to suppress known interference so as to provide
physical layer security and relies on the waveform being
cyclic with some period L [19]. Evaluation of that method
for one cyclic block with length L requires 25L + 9 real-
valued multiplications, 18L − 1 real-valued additions, L + 1
real-valued divisions, evaluating atan2(), L + 1 times, and
calculating the L-point discrete Fourier transform at least once.
This puts the referenced method on par with the proposed
adaptive filter in terms of computational complexity for a
single data point. However, due to its block-based nature, the
reference method can take advantage of parallel processing.
Also, methods that rely on features built into the waveform
generally require fewer samples than the proposed algorithm
to provide accurate parameter estimates. Then again, the
repetitive waveform structure required by the reference method
could be a vulnerability in physical layer security applications.

IV. STEADY-STATE ANALYSIS

An important performance measure of an adaptive filter,
which is typically used in the literature, is its steady-state
excess mean-square error (EMSE) [35]. In this section, we will
carry out the derivation to express the total EMSE in terms of
three EMSEs, each related to an update equation in (10). The
analysis developed in this section relies on energy conservation
arguments [33] and on decoupling the errors of separate update
equations by solving a system of linear equations [42]. In
order to accommodate the errors accumulated by the frequency
offset update equations, we extend the existing methodology
to account for what we will refer to as the self-induced
nonstationarity. Furthermore, to make the analysis tractable,
we omit the time-varying terms φ(n) and β(n) of the system
model here. That is, the focus is on steady-state analysis rather
than tracking analysis, considering a quasi-static channel.
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A. Self-Induced Nonstationarity
In practice, the frequency offset estimates ε(n) and η(n) are

bound to differ from the actual parameters εo and ηo, resulting
in estimation errors ε̃(n) = εo − ε(n) and η̃(n) = ηo − η(n).
This is especially so during the start-up phase of the algorithm
but also during the steady state, as gradient noise affects
the estimates at each iteration. Therefore, the accumulating
estimation errors

∑n
i=1 ε̃(i− 1) and

∑n
i=1 η̃(i− 1) inevitably

cause a phase shift and fractional time delay, or self-induced
nonstationarity, which the channel estimate wn will then try
to compensate for. In order to proceed with the steady-state
analysis, we first need a way to express how those accumulated
estimation errors affect the channel update equation (10a).

Based on (3), we define the total a priori error as

ea(n) = yonw
oej

∑n
i=1 ε

o

− ynwn−1e
j
∑n
i=1 ε(i−1), (19)

which is simply the error between the received signal and
the estimated signal but discarding the noise term v(n). By
shifting both sides of the a priori error equation in phase by
−
∑n
i=1 ε(i− 1) and in time by −

∑n
i=1 η(i− 1), we get

esa(n) = xnTnw
oej

∑n
i=1 ε̃(i−1) − xnwn−1, (20)

where, for notational simplicity, we have denoted the phase
and time shifted a priori error as

esa(n) =∆ ea

(
n−

n∑
i=1

η(i− 1)

)
e−j

∑n
i=1 ε(i−1) (21)

and Tn is an arbitrary time-shift matrix of size M × M
that, when multiplying with xn, delays the signal xn by∑n
i=1 η̃(i− 1). From (20), we can define wo

n as

wo
n =∆ Tnw

oej
∑n
i=1 ε̃(i−1). (22)

In order to proceed, we call on the following assumption.
A.1: At the steady state, as n → ∞, the instantaneous

estimation errors ε̃(n) and η̃(n) satisfy the conditions

ε̃(n)� 1 and η̃(n)� 1

fmax
,

where fmax is the maximum frequency component of xn.
This is a reasonable assumption because in steady state we

expect the estimation errors to vary around zero. Relying on
A.1, we can use linear approximation [43] to write (20) as

esa(n) ≈ [xnTn−1 + (x′nTn−1) ◦ η̃n−1]wo

·
[
ej

∑n−1
i=1 ε̃(i−1) + ej

∑n−1
i=1 ε̃(i−1)jε̃(n− 1)

]
− xnwn−1,

(23)

where ◦ denotes the Hadamard product, i.e., element-wise
multiplication, and η̃n is the row vector

η̃n = [η̃(n−M + 1), . . . , η̃(n− 1)] .

By expanding (23), and ignoring the cross-terms that include
both ε̃(n− 1) and η̃(n− 1), as they are very small under A.1,
(23) can be rewritten as

esa(n) ≈ xnTn−1w
oej

∑n−1
i=1 ε̃(i−1)

+ xnTn−1w
oej

∑n−1
i=1 ε̃(i−1)jε̃(n− 1)

+ x′nTn−1w
oej

∑n−1
i=1 ε̃(i−1)η̃(n− 1)− xnwn−1, (24)

which, by substituting in (22) for index n− 1, is simply

esa(n) ≈ xnw
o
n−1 + xnw

o
n−1jε̃(n− 1)

+ x′nw
o
n−1η̃(n− 1)− xnwn−1. (25)

Finally, taking w̃n = wo
n −wn to be the estimation error of

the channel and reversing the phase and time shift introduced
in (20), the a priori error can be expressed as

ena(n) ≈ ynw̃n−1e
j
∑n
i=1 ε(i−1)

+ ynw
o
n−1jε̃(n− 1)ej

∑n
i=1 ε(i−1)

+ y′nw
o
n−1η̃(n− 1)ej

∑n
i=1 ε(i−1) (26)

and we denote the three terms on the right-hand side as the a
priori errors of the three update equations so that

enw,a(n) = ynw̃n−1e
j
∑n
i=1 ε(i−1), (27a)

enε,a(n) = ynw
o
n−1jε̃(n− 1)ej

∑n
i=1 ε(i−1), (27b)

enη,a(n) = y′nw
o
n−1η̃(n− 1)ej

∑n
i=1 ε(i−1), (27c)

where the superscript n denotes this first set of definitions for
the a priori errors.

B. Mean-Square Performance

Following the well-known energy conservation relation
method [28], we also define the following second set of a
priori errors

ew,a(n) = yn(wo
n −wn−1)ej

∑n
i=1 ε(i−1), (28a)

eε,a(n) = ynwn−1ε̃(n− 1)ej
∑n
i=1 ε(i−1), (28b)

eη,a(n) = y′nwn−1η̃(n− 1)ej
∑n
i=1 ε(i−1), (28c)

so that the total error e(n) is the sum of the a priori errors
and the measurement noise

e(n) = ew,a(n) + eε,a(n) + eη,a(n) + v(n). (29)

Similarly, we define the a posteriori errors

ew,p(n) = ynw̃ne
j
∑n
i=1 ε(i−1), (30a)

eε,p(n) = ynwnε̃(n)ej
∑n
i=1 ε(i−1), (30b)

eη,p(n) = y′nwnη̃(n)ej
∑n
i=1 ε(i−1). (30c)

A.2: The noise sequence v(n) is stationary, with variance
σ2
v , and statistically independent of the a priori errors ew,a(n),
eε,a(n), and eη,a(n).

Under the above justifiable assumption, we find that the
MSE is equivalently given by

MSE = ζ + σ2
v = ζw + ζε + ζη + σ2

v , (31)

where

ζw = lim
n→∞

E
[
|ew,a(n)|2

]
, (32a)

ζε = lim
n→∞

E
[
|eε,a(n)|2

]
, (32b)

ζη = lim
n→∞

E
[
|eη,a(n)|2

]
. (32c)
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Employing the energy conservation relation method and
relying on the two sets of a priori errors, it is shown in the
Appendix that the following equations hold:

µwE
[
‖yn‖2|ew,a(n)|2

]
+ µwE

[
‖yn‖2|eε,a(n)|2

]
+ µwE

[
‖yn‖2|eη,a(n)|2

]
+ µwE

[
‖yn‖2|v(n)|2

]
+ E

[
M

µw‖yn‖2
|enε,a(n)|2

]
+ E

[
M

µw‖yn‖2
|enη,a(n)|2

]
= 2E

[
|ew,a(n)|2

]
, (33a)

µεE
[
|ynwn−1|2|ew,a(n)|2

]
+ µεE

[
|ynwn−1|2|eε,a(n)|2

]
+ µεE

[
|ynwn−1|2|eη,a(n)|2

]
+ µεE

[
|ynwn−1|2|v(n)|2

]
= 2E

[
|eε,a(n)|2

]
, (33b)

µηE
[
|y′nwn−1|2|ew,a(n)|2

]
+ µηE

[
|y′nwn−1|2|eε,a(n)|2

]
+ µηE

[
|y′nwn−1|2|eη,a(n)|2

]
+ µηE

[
|y′nwn−1|2|v(n)|2

]
= 2E

[
|eη,a(n)|2

]
. (33c)

This system of equations can now be solved for the EMSEs
ζw, ζε, and ζη . To do so, we consider the following two cases.

1) Using Separation Principle: One way to solve the
equations in (33) is by imposing the following assumption.

A.3: In steady state, ‖yn‖2, |ynwn−1|2, and |y′nwn−1|2 are
statistically independent of |ew,a|2, |eε,a(n)|2, and |eη,a(n)|2.

This assumption is reasonable at the steady state since the
behaviour of the a priori errors is less likely to be sensitive
to the input data. It is similar to the separation principle
assumption made in, e.g., [33], [42], and allows us to write

E
[
‖yn‖2|ew,a(n)|2

]
= E

[
‖yn‖2

]
E
[
|ew,a(n)|2

]
,

E
[
|ynwn−1|2|eε,a(n)|2

]
= E

[
|ynwn−1|2

]
E
[
|eε,a(n)|2

]
,

E
[
|y′nwn−1|2|eη,a(n)|2

]
= E

[
|y′nwn−1|2

]
E
[
|eη,a(n)|2

]
.

Furthermore, we make the following assumptions.
A.4: In steady state for a static channel, as n → ∞, the

channel estimate is close to the actual channel wn−1 → wo.
A.5: In steady state, for sufficiently small ηo, the following

equalities hold: ‖yn‖2 = ‖xn‖2, |ynwn−1|2 = |xnwo|2 and
|y′nwn−1|2 = |x′nwo|2.

A.6: In steady state, the two sets of a priori errors are
equivalent, i.e., E|enw,a(n)|2 = E|ew,a(n)|2, E|enε,a(n)|2 =
E|eε,a(n)|2, E|enη,a(n)|2 = E|eη,a(n)|2.

Using the assumptions A.3 through A.6, and solving (33)
for ζw, ζε, and ζη , we obtain the following expressions for
the EMSEs of the proposed algorithm:

ζw =
2µw Tr (R)σ2

v

γ

+
M µε Tr (RQ)

µw Tr (R) σ
2
v +M

µη Tr (PQ)
µw Tr (R) σ

2
v

γ
,

ζε =
2µε Tr (RQ)σ2

v

γ
,

ζη =
2µη Tr (PQ)σ2

v

γ
,

(35a)

(35b)

(35c)

where the denominator γ is

γ = 4− 2µw Tr (R)− 2µε Tr (RQ)− 2µη Tr (PQ)

−Mµε Tr (RQ)

µw Tr (R)
−Mµη Tr (PQ)

µw Tr (R)
(36)

and R is the covariance matrix R = E [x∗nxn], P is the
covariance matrix P = E

[
(x′n)

∗
x′n
]
, and Q = wo (wo)

∗.
Note that, in order for the algorithm to remain stable, the

denominator of the EMSEs needs to be positive. If we consider
an approximation of the denominator without the self-induced
nonstationarity terms, i.e., the last two terms in (36), then
this result has an equivalent implication to that of the simple
approximation (18), which we derived using the Taylor series
expansion of the instantaneous error.

2) Assuming Gaussian White Input Signals: For Gaussian
white input signals (with R = σ2

xI), relying on A.4 and
A.5, (33) can be more accurately solved by resorting to the
following independence assumption.

A.7: At steady state, the estimation errors w̃n, ε̃(n), and
η̃(n) are all statistically independent of xn, xnwo, and x′nw

o.
This is an extension of the assumption, which is widely

used for analysing the performance of adaptive filters [33].
Relying on the independence assumption A.7 and following
the same reasoning that is used for analysing the steady-state
performance of the LMS adaptive filter [35, p. 296], it can be
verified that

E
[
‖xn‖2|ek,a(n)|2

]
= (M + 1)σ2

xζ
k, (37a)

E
[
|xnwo|2|ek,a(n)|2

]
= (1 +

1

M
)σ2
x‖wo‖2ζk, (37b)

E
[
|x′nwo|2|ek,a(n)|2

]
≈ (2 +

2

M
)σ2
x‖wo‖2ζk, (37c)

where k is either w, ε, or η, and we have used that

σ2
x′ =

σ2
x(n) + σ2

x(n−1)

(∆n)2
= 2σ2

x,

where we are first relying on the independence of successive
samples of x(n) and consequently on the samples being iden-
tically distributed as well. The last equation in (37) does not
hold precisely but is an approximation, because the derivative
itself is not identically and independently distributed. Still, for
a channel wo with a relatively flat frequency response, this
approximation can be practical, as will be seen in the results
section. Using A.4, A.5, A.7, and solving (33) for ζw, ζε, and
ζη , we obtain

ζw =
2µwMσ2

xσ
2
v

γ

+

µε
µwM

‖wo‖2σ2
v +

µη
µwM

2‖wo‖2σ2
v

γ
,

ζε =
2µεσ

2
x‖wo‖2σ2

v

γ
,

ζη =
4µησ

2
x‖wo‖2σ2

v

γ
,

(38a)

(38b)

(38c)
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where the denominator γ is the same for all equations:

γ = 4− 2µw(M + 1)σ2
x

− 2µε(1 +
1

M
)σ2
x‖wo‖2 − µε

µw
(1 +

1

M
)‖wo‖2

− 4µη(1 +
1

M
)σ2
x‖wo‖2 − 2

µη
µw

(1 +
1

M
)‖wo‖2. (39)

V. NUMERICAL RESULTS

In order to verify the theoretical steady-state MSE expres-
sions and evaluate the performance of the proposed algorithm,
the theoretical results are herein first compared to steady-
state simulations, where the channel and frequency offsets are
assumed to be known to the algorithm and time-varying terms
are omitted, and then time-varying simulations together with
proof-of-concept RF measurements are presented.

A. Steady-State Results

In Fig. 3, the steady-state theoretical MSEs obtained from
expressions (35) and (38) are compared with the MSE ob-
served in simulations. The simulations are run with different
channel weight vectors wo, each of length M = 3 with
a rather flat frequency response. The input signal xn is
Gaussian of unit variance and the noise v(n) is Gaussian with
variance σ2

v = 10−3. From here on out, in order to make the
results relatable, we refer to the sampling frequency offset as
∆f = fd − fx instead of ηo. The simulated frequency offsets
are εo = 6 kHz and ∆f = 5 Hz, which, considering a carrier
frequency of 2.4 GHz and sampling frequency of 2 MHz, is
equivalent to a 2.5 ppm oscillator inaccuracy. Note that the
MSE expressions do not depend on the frequency offset values,
since the offsets themselves inherently do not affect the energy
conservation relation. This is in alignment with our extensive
simulation results for practical ranges of εo and ∆f (that are
not shown herein), as steady-state MSE is indifferent w.r.t. the

10−4 10−3 10−2

−30

−28

−26

−24

−22

−20

µǫ

M
S
E

[d
B
]

10−4 10−3 10−2

µη

Theory (35) Theory (38) Simulation

Fig. 3. Simulated and theoretical MSE curves relying on the separation
principle and Gaussian input versus µε for µw = 0.0025 and µη = 0 on the
left and versus µη for µw = 0.005 and µε = 0 on the right.
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]

µw = 10−3

µw = 10−2

µw = 10−1

Fig. 4. Simulated (only markers) and theoretical (solid lines) MSE curves
at various µw versus µε for µη = 0. The dashed vertical line indicates the
upper bound for the two step sizes when µw = µε.

offset values. Thus, the simulated results are only plotted for
these two example frequency offsets.

Each simulation result is the steady-state statistical average
of 1024 runs, with 5000 iterations in each run. The average
of the last 2500 entries of the ensemble-average curve is then
used as the simulated MSE value. Oversampling is used to pre-
vent interpolation errors from skewing the simulation results.
In Fig. 3, the analysis focuses separately on either frequency
offset estimation combined with the channel estimation. The
comparison shows that both expressions are in good match
with simulation results at small values of µε and µη . However,
(38) gives a better match with the simulation results for larger
µε and µη values, which supports the use of A.7.

Figures 4 and 5 compare the theoretical MSE obtained from
(38) with the simulated MSE for various µw over a range
of µε or µη . Again, the results show a good match between
theoretical and simulated results, especially at smaller step size
values, when the steady-state assumptions are better justified.
However, in general the sampling frequency offset update
equation is not well suited for operating with disproportionally
selected step sizes — carrier frequency offset can usually be
recovered, but if the signals become unaligned in time because
of persisting large estimation errors in sampling frequency
offset, then this can be difficult to recover from.

Furthermore, Fig. 4 and 5 also illustrate the relevance of
the the step sizes’ upper bound (18). For visual clarity, only
a single upper bound is calculated and plotted by taking the
two step sizes, which are varied, to be equal in (18). As the
step sizes approach the upper bound, performance of the filter
deteriorates, and, since the filter leaves the steady state, the
match between theoretical and simulated MSE results also de-
clines. Finally, Fig. 6 presents a comparison of the theoretical
and simulated MSEs of the proposed algorithm when all of the
system parameters are simultaneously estimated. As shown by
all the foregoing numerical results in Figs. 3–6, the theoretical
results match very well with the simulations.
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µw = 10−3
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Fig. 5. Simulated (only markers) and theoretical (solid lines) MSE curves
at various µw versus µη for µε = 0. The dashed vertical line indicates the
upper bound for the two step sizes when µw = µη .
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Fig. 6. Simulated (only markers) and theoretical (solid lines) MSE curves at
various µε versus µη for µw = 10−3.

B. Time-Varying Results

In this subsection, using simulations, we analyze the per-
formance of the proposed filter when the frequency offsets
are time-varying, i.e., we focus on the effect of φ(n) and
β(n) on the algorithm’s performance. Figure 7 illustrates the
filter’s ability to track long-term changes in the time-varying
terms. The simulations are started with perfect knowledge
about the initial state of the channel and with zero frequency
offsets. Then both frequency offsets are varied over time either
gradually or abruptly as shown in Fig. 7 with the dashed lines.
Other simulation parameters are kept the same as previously,
including the ensemble averaging. The simulation results in-
dicate that the adaptive filter is able to track those changes,
regardless of whether the parameters change gradually or
abruptly. As a result, the MSE is stable over time, except for
a brief readjustment period during the abrupt frequency offset
changes, which is expected.
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∆
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Fig. 7. Simulated results illustrating the filter’s ability to track time-varying
frequency offsets at step sizes µw = 10−3, µε = 10−6, and µη = 10−6.
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β = 10−19
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Fig. 8. Simulated performance for various sampling jitter and phase noise
variances when εo = 0 and ηo = 0 at step sizes µw = 0, µε = 0, and
µη = 0 (dashed lines), µw = 10−3, µε = 0, and µη = 0 (dash dotted
lines), and µw = 10−3, µε = 10−5, and µη = 10−5 (solid lines).

In contrast, Fig. 8 demonstrates the filter’s tracking per-
formance under short-term changes, i.e., phase noise and
sampling time jitter. Both are modelled as first-order autore-
gressive processes with the process parameters αφ and αβ
close to one and the variances being σ2

φ and σ2
β (the exact

values of which are given in Fig. 8). The algorithm is run
for 106 iterations and, again, the simulations are started with
perfect knowledge of the initial state of the channel, yet
without knowledge about the noise processes. The simulations
illustrate three cases: no adaptation at all, adaptation of only
the channel estimate wn, and adaptation of all the parameters.
The case without adaptation serves as a baseline for the
MSE performance in the given noisy circumstances, while
the other cases illustrate the benefits of adapting the channel
and frequency offset estimates. The results show that, even
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Fig. 9. The experiment setup in an office room with two URSP-2900s.

though excessive phase noise and sampling jitter can degrade
the algorithm’s performance, adapting all the parameters still
has a clear benefit compared to limited or no adaptation.

C. Experimental Results

The experiment is carried out indoors using two USRP-
2900 software-defined radios with dipole antennas. The radios
have internal temperature-compensated crystal oscillators with
frequency accuracy of couple parts per million, presenting a
fair scenario for analyzing the algorithm. The radios were
positioned in the opposite corners of an office room with about
five meters line-of-sight distance between them as shown in
Fig. 9. As such, the experimental setup is static, with only the
inherent oscillator drifts contributing a slowly time-varying
component. The measurements are done in a relatively quiet
section of the 2.4 GHz ISM frequency band, so that signals
from other wireless devices do not affect the measurements,
and using a sampling rate of 2 MHz. The transmitter broad-
casts a bandlimited Gaussian noise signal, which is known to
the receiver entirely. As such, the experiment illustrates the
known-interference cancellation scenario, where the residual
error signal could contain a signal-of-interest. Two signals
bandwidths, 1 MHz and 0.5 MHz, are used with transmit
powers −60 dBm/Hz or −90 dBm/Hz. The receiving node
receives the bandlimited noise signal over the air and records
it. The algorithm is then run offline on the recordings.

Length of the estimated channel vector wn is taken to be
M = 9, which is more than sufficient for this scenario, and
all of the estimated parameters are initialized to zero. For
the algorithm to converge, it is required that the known and
received signal streams be coarsely aligned in time (i.e., the
difference in the two streams’ starts may not exceed M − 1
samples). That coarse alignment is provided by onset detection
— comparing the received signal’s energy to a threshold.
Fig. 10 shows the measured signal spectra at different stages
of the system model. It can be observed that suppression
of the known interference is not significantly affected by its
bandwidth. Furthermore, when the received known interfer-
ence is substantially above the noise floor then the MSE,
i.e., the residual signal, is much higher than the measurement
noise floor. This is caused by the nonlinearities induced in
the USRP-2900 RF front-ends, which the algorithm does not
account for. When the received known interference is not so
powerful, those nonlinearities do not affect cancellation. Based
on measurements at other received known-interference power

levels that are omitted for brevity, in this scenario the algorithm
requires that the signal be at least 4 dB above the noise floor
in order to provide stable parameter estimates.

Finally, Fig. 11 demonstrates the algorithm’s performance
for the purpose of known-interference cancellation while esti-
mating and tracking the channel together with the frequency
offsets (Residual 2 and 3) as opposed to estimating and
tracking the channel without compensating for the frequency
offsets (Residual 1). It is evident that explicit adaptation
of frequency offsets gives better short-term and long-term
performance. The results also show how continuous frequency
offsets tracking is necessary in practice (Residual 4, 5 and 6),
due to their time-varying nature. Again, it is clear that the
experimental MSE does not reach the noise floor, as excessive
phase noise, sampling time jitter, and nonlinear distortions
degrade the performance of the algorithm. Nevertheless, the
experimental results demonstrate the efficiency of the proposed
algorithm in estimating and compensating for time-varying
carrier and sampling frequency offsets of an unknown channel.

We compared the proposed algorithm to the method in [19]
using a separate set of measurements with a cyclic bandlimited
Gaussian noise waveform having period L. The two algo-
rithms achieved a similar level of MSE eventually as long
as the period L was chosen so that the carrier frequency
offset remained within the reference algorithm’s estimation
range. As such, only the proposed algorithm’s results are
presented in the figures for brevity. The reference algorithm
does have an advantage over the proposed algorithm in that
it provides estimates of the channel and frequency offsets
quicker. However, this advantage of the reference method
relies on the assumptions that the used waveform is cyclic
with period L and the combination of period L and sampling
rate is appropriate for the frequency offsets. The latter of which
significantly limits the acceptable range of L. The proposed
algorithm, however, is not limited to cyclic waveforms and,
as such, is also free from the related estimation range and
accuracy limitations.
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Fig. 10. Power spectral densities of the transmitted, received, and residual
signals along with the noise floor at the receiver in steady state, i.e., discarding
the start-up phase of the algorithm.
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Fig. 11. The algorithm’s MSE progression in time for the 0.5MHz
−60dBm/Hz signal. Residual 1 is without frequency offset compensation
(µε = 0 and µη = 0); Residual 2 uses larger step sizes for frequency offset
updates (µε = 5 · 10−5 & µη = 5 · 10−5) and Residual 3 uses smaller step
sizes (µε = 2 · 10−6 & µη = 2 · 10−6); Residual 4 and 5 supplement cases
2 and 3, as the frequency offset estimations are stopped after 10 s. Residual
6 illustrates the situation without sampling frequency offset compensation.

VI. CONCLUSION

This article proposed an adaptive filter for jointly and
explicitly estimating the channel impulse response, carrier
frequency offset, and sampling frequency offset between a
transmitter and receiver pair. The proposed algorithm relies
on the stochastic gradient descent method minimizing the
mean-square error and is therefore computationally simple,
yet effective. Compared to existing methods, the proposed
adaptive filter facilitates estimating the channel and frequency
offsets without requirements on the used waveform. Stability
and convergence of the algorithm depend on the proper selec-
tion of step sizes in relation to the other system parameters.
Hence, upper bounds for the step sizes were derived and
presented. Furthermore, this article also provides a theoretical
steady-state analysis of the proposed adaptive filter. Novel
expressions for the excess mean-square error were derived by
extending the energy conservation relation to account for the
self-induced nonstationarity inherent in the proposed adaptive
filter. Validity of the theoretical expressions was corroborated
through comparison to simulations. Also, simulation results

were presented for time-varying and noisy frequency offsets.
Finally, the algorithm was validated on measurement data.

APPENDIX

The following analysis extends the energy conservation
relation [33], which is established by expressing the update
equations in (10) in terms of the estimation errors w̃n, ε̃(n),
and η̃(n). Subtracting both sides of (10a) from wo

n, both sides
of (10b) from εo, and both sides of (10c) from ηo, we get

w̃n = wo
n − wn−1 − µw

[
yne

j
∑n
i=1 ε(i−1)

]∗
e(n), (40a)

ε̃(n) = ε̃(n− 1)

− µε
[
ynwn−1e

j
∑n
i=1 ε(i−1)j

]∗
e(n), (40b)

η̃(n) = η̃(n− 1)

− µη
[
y′nwn−1e

j
∑n
i=1 ε(i−1)

]∗
e(n). (40c)

Furthermore, by multiplying both sides of equation
(40a) with yne

j
∑n
i=1 ε(i−1) from the left, (40b) with

ynwn−1e
j
∑n
i=1 ε(i−1), and (40c) with y′nwn−1e

j
∑n
i=1 ε(i−1),

we see that the a priori (28) and a posteriori (30) estimation
errors are related via

ew,p(n) = ew,a(n)− µw‖yn‖2e(n), (41a)

eε,p(n) = eε,a(n)− µε|ynwn−1|2j∗e(n), (41b)

eη,p(n) = eη,a(n)− µη|y′nwn−1|2e(n). (41c)

Equations (40) and (41) provide an alternative representa-
tion of the adaptive filter in terms of the error quantities. This
is useful, as it will allow relating the steady-state behavior of
these errors. So, rearranging (41a), (41b), and (41c) allows us
to express the total error e(n) separately in terms of the three
sets of a priori and a posteriori errors:

e(n) =
1

µw‖yn‖2
[ew,a(n)− ew,p(n)] , (42a)

e(n) =
1

µε|ynwn−1|2
[eε,a(n)− eε,p(n)] , (42b)

e(n) =
1

µη|y′nwn−1|2
[eη,a(n)− eη,p(n)] . (42c)

Substituting the right-hand sides of the above into (40a), (40b),
and (40c), gives respectively

w̃n = wo
n −wn−1 −

y∗n
‖yn‖2

[ew,a(n)− ew,p(n)] , (43a)

ε̃(n) = ε̃(n− 1)− (ynwn−1)
∗

|ynwn−1|2
[eε,a(n)− eε,p(n)] , (43b)

η̃(n) = η̃(n− 1)− (y′nwn−1)
∗

|y′nwn−1|2
[eη,a(n)− eη,p(n)] , (43c)

where on each side those identities, we have a combination
of a priori and a posteriori errors, while the step sizes cancel
out. By evaluating the energies of both sides, we find that the
following energy equalities hold:

‖w̃n‖2 +
|ew,a(n)|2

‖yn‖2
= ‖wo

n −wn−1‖2 +
|ew,p(n)|2

‖yn‖2
, (44a)
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|ε̃(n)|2 +
|eε,a(n)|2

|ynwn−1|2
= |ε̃(n− 1)|2 +

|eε,p(n)|2

|ynwn−1|2
, (44b)

|η̃(n)|2 +
|eη,a(n)|2

|y′nwn−1|2
= |η̃(n− 1)|2 +

|eη,p(n)|2

|y′nwn−1|2
. (44c)

Comparing (44a) with (44b) and (44c), we see that the main
difference concerns the interpretation of the terms wo

n − wn

and wo
n−wn−1. While the term on the left-hand side of (44a)

can be recognized as w̃n, just like the terms on the left-hand
sides of (44b) and (44c), the second difference is not w̃n−1

since, due to the self-induced nonstationarity, w̃n−1 is defined
as w̃n−1 = wo

n−1 −wn−1 in terms of wo
n−1 and not wo

n.
In order to explain the relevance of the energy relation

equations to the steady-state analysis of the adaptive filter,
we first need to relate ‖wo

n−wn−1‖2 to ‖w̃n−1‖2. To do so,
we can write

‖wo
n −wn−1‖2 =

∥∥∥∥wo
n−1 + wo

n−1jε̃(n− 1)

+
y∗n
‖yn‖2

y′nw
o
n−1η̃(n− 1)−wn−1

∥∥∥∥2

. (45)

Recall that the first three terms on the right-hand side within
the squared norm constitute wo

n by means of linear approxi-
mation as in the derivation of (26). Based on (45), we get

‖wo
n −wn−1‖2 = ‖w̃n−1‖2 +

∥∥wo
n−1jε̃(n− 1)

∥∥2

+

∥∥∥∥ y∗n
‖yn‖2

y′nw
o
n−1η̃(n− 1)

∥∥∥∥2

. (46)

The last two terms on the right-hand side of which can be
related to |enε,a(n)|2 and |enη,a(n)|2 by writing

‖wo
n −wn−1‖2 = ‖w̃n−1‖2 +

M |enε,a(n)|2

‖yn‖2
+
M |enη,a(n)|2

‖yn‖2
.

(47)
Substituting (47) into (44a), taking the expectation of both

sides of (44a), (44b), and (44c), using that E‖w̃n‖2 =
E‖w̃n−1‖2, E|ε̃(n)|2 = E|ε̃(n − 1)|2, and E|η̃(n)|2 =
E|η̃(n − 1)|2 in steady state as n → ∞, gives the following
fundamental variance relations:

E

[
|ew,a(n)|2

‖yn‖2

]
= E

[
M |enε,a(n)|2

‖yn‖2

]

+ E

[
M |enη,a(n)|2

‖yn‖2

]
+ E

[
|ew,p(n)|2

‖yn‖2

]
, (48a)

E

[
|eε,a(n)|2

|ynwn−1|2

]
= E

[
|eε,p(n)|2

|ynwn−1|2

]
, (48b)

E

[
|eη,a(n)|2

|y′nwn−1|2

]
= E

[
|eη,p(n)|2

|y′nwn−1|2

]
. (48c)

These equalities are given in terms of the a priori and a
posteriori errors. However, we know from (41) how those
errors are related. Therefore, using (41) the above collapse to

the following error variance relations in terms of the a priori
errors and noise only:

E

[
|ew,a(n)|2

‖yn‖2

]
= E

[
M |enε,a(n)|2

‖yn‖2

]
+ E

[
M |enη,a(n)|2

‖yn‖2

]

+ E

[
1

‖yn‖2
|ew,a(n)− µw‖yn‖2e(n)|2

]
, (49a)

E

[
|eε,a(n)|2

|ynwn−1|2

]
= E

[
|eε,a(n)− µε|ynwn−1|2j∗e(n)|2

|ynwn−1|2

]
,

(49b)

E

[
|eη,a(n)|2

|y′nwn−1|2

]
= E

[
|eη,a(n)− µη|y′nwn−1|2e(n)|2

|y′nwn−1|2

]
.

(49c)
Expanding the above, rearranging, and dividing by µw, µε,
and µη respectively, we get

µwE
[
‖yn‖2|e(n)|2

]
+ E

[
M |enε,a(n)|2

µw‖yn‖2

]

+ E

[
M |enη,a(n)|2

µw‖yn‖2

]
= 2<

{
E
[
e∗w,a(n)e(n)

]}
, (50a)

µεE
[
|ynwn−1|2|e(n)|2

]
= 2<

{
E
[
e∗ε,a(n)e(n)

]}
, (50b)

µηE
[
|y′nwn−1|2|e(n)|2

]
= 2<

{
E
[
e∗η,a(n)e(n)

]}
. (50c)

Finally, substituting (29) into the equations in (50) while also
relying on A.2, we arrive at the equations in (33).
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