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A robust blind carrier frequency synchronization technique applicable
to direct sequence spread spectrum systems is presented. The proposed
method extends a blind timing synchronization technique based on
the autocorrelation matrix by applying open-loop single frequency
estimation algorithms to the eigenvector of the time synchronized
autocorrelation matrix largest eigenvalue. A comparison of different
single frequency estimation algorithms is given. Simulation results show
that some algorithms attains the Cramer-Rao bound even at low SNRs.

Introduction: Direct sequence spread spectrum (DSSS) is a very
attractive modulation technique for military and civilian communication
systems, mainly due to its resistance to narrowband interference and
low probability of detection. DSSS also allows the sharing of the same
frequency band among multiple users by means of code division multiple
access (CDMA). These nice properties make DSSS a popular spreading
technique which is used in a lot of commercial wireless communications
systems like wireless LAN (IEEE 802.11b), wireless PAN (IEEE
802.15.4), global navigation satellite systems (GPS, Galilelo), 3G mobile
telecommunications (UMTS).

In DSSS, the data bits are modulated by M-ary phase shift keying
(M-PSK). DSSS multiplies the modulated data bits by a spreading
code which is generally a pseudo-random bit sequence (PRBS), with
a chip rate much higher than the symbol rate of the modulated data
bits, thereby spreading the energy of the original modulated data
into a much wider band. This operation can hide the signal into the
noise, thus providing very low SNRs. Frequency estimation in complex
additive white Gaussian noise (AWGN) is a common problem and many
techniques have been proposed over the years [1, 2, 3, 4]. Frequency
estimation of M-PSK signals in AWGN applies the previous techniques
to the Mth power received signal [5, 6]. However, these frequency
estimation techniques do not provide accurate frequency estimates at low
SNRs.

Blind techniques have been proposed for DSSS detection [8],
estimation of the spreading sequence [7, 9], and robust estimation
of the timing offset [10]. This paper presents a robust blind carrier
frequency synchronization technique applicable to DSSS systems. The
proposed method extends the blind timing synchronization technique
based on the autocorrelation matrix [10] by applying open-loop single
frequency estimation algorithms to the Mth power eigenvector of the
time synchronized autocorrelation matrix that corresponds to the largest
eigenvalue. A comparison of different single frequency estimation
algorithms is given. Simulation results show that some algorithms attains
the Cramer-Rao bound even at low SNRs.

Proposed method: The transmitted signal consists of a spreading code
x= {x(i)} of length N multiplied by the M-PSK modulated data d=
{d(k)} of length K with symbol rate 1/N . The received signal y =

{y(i)} of length L=KN can be modeled as

y(i) =Aej(2παi+φ)d(k)x(i) + n(i) (1)

with k= bi/Nc, A the received signal amplitude, α the frequency
offset, φ the phase offset and n(i) the AWGN with variance N0/2 per
dimension.

The blind detection of DSSS consists of dividing the received
signal into P blocks of length T and calculating the fluctuations of
autocorrelation estimators r̂= {r̂(j)} of length T given by [8]

r̂(j) =E[|r(j)|2] =
1

P

P−1∑
p=0

|r(j, p)|2 (2)

with

r(j, p) =
1

T

T−1∑
t=0

y(pN + t)y∗(pN + t+ j) (3)

If N is known, a simple scheme to detect the presence of a DSSS
signal is to divide the received signal into P blocks of size T with N <

T < 2N and to verify if the position of the largest peak of the fluctuations
of autocorrelation estimators is equal to N . If N is unknown, a simple
scheme to detect the presence of a DSSS signal is to divide the received
signal into P blocks of size T and to verify if the positions of the largest
peaks of the fluctuations of autocorrelation estimators are multiple of the
first peak position. However, several trials might be needed to fall in the
case 2N <T < 3N in the case of the detection of DSSS by two largest
peaks whose positions are multiple of the first peak position.

A robust estimation of the timing offset operating independently of
carrier frequency offset requires the maximization of the Frobenius norm
of the autocorrelation matrix given by [10]

θopt = argmax
θ={0,...,N−1}

||Ry(θ)||2 (4)

with

Ry(θ) =E[y(θ, p)yH(θ, p)] =
1

P

P−1∑
p=0

y(θ, p)yH(θ, p) (5)

and y(θ, p) = [y(pN + θ), . . . , y((p+ 1)N + θ − 1)]T . The eigenvalue
decomposition of the time synchronized autocorrelation matrix is given
by

Ry(θopt) =VyΛyV
H
y (6)

with Λy = diag(λy(0), . . . , λy(N − 1) the matrix of eigenvalues and
Vy the unitary matrix whose columns contain the eigenvectors
of the corresponding eigenvalues. In ideal conditions (flat fading
channel without carrier frequency offset), the eigenvector of the
time synchronized autocorrelation matrix of the largest eigenvalue
corresponds to the spreading sequence [9]

v̂y = [vy(βopt, 0), . . . , vy(βopt, N − 1)] (7)

with
βopt = argmax

β={0,...,N−1}
λ(β) (8)

While the eigenvector of the largest eigenvalue can be a good estimate
of the spreading sequence in a flat fading channel without carrier
frequency offset, this is no longer true in multipath channels with carrier
frequency offset. In multipath channels, the eigenvector of the largest
eigenvalue corresponds to the convolution of the spreading sequence
and the channel response [11]. There is the same correspondence for
the eigenvector of the smallest eigenvalue in the noise subspace method
presented in [7]. The case of multipath channels is out of scope of this
letter and we focus on carrier frequency offset. In the following, we show
that the eigenvector of the largest eigenvalue contains information about
the spreading sequence and the carrier frequency offset. We describe a
robust blind carrier frequency synchronization technique applicable to
DSSS systems with carrier frequency offset.

Theorem The eigenvector of the largest eigenvalue in the presence
of a carrier frequency offset is the eigenvector of the largest eigenvalue
without carrier frequency offset multiplied point to point by the carrier
frequency offset vector

f = [1, ej2πα, . . . , ej2πα(N−1)]T (9)

Proof Equation (1) can be represented by the following model

y(p) = diag(s(p))g(p) + n(p) (10)

with
g(p) = [ej(2πα(pN), . . . , ej(2πα((p+1)N−1)]T

s(p) = [Ad(p)x(pN), . . . , Ad(p)x((p+ 1)N − 1)]T

n(p) = [n(pN), . . . , n((p+ 1)N − 1)]T

Then we have

y(p)yH(p) = diag(s(p))g(p)gH(p)diag(s(p))H

+diag(s(p))g(p)nH(p) + gH(p)diag(s(p))Hn(p)

+n(p)nH(p)
(11)

In the first term of equation (11) we have g(p)gH(p) =ffH . The first
term of equation (11) can be rewritten as
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diag(s(p))ffHdiag(s(p))H = diag(f)s(p)sH(p)diag(f)H (12)

The autocorrelation matrix can be written as

Ry = E[y(p)yH(p)] = diag(f)Rsdiag(f)H + σ2I

= diag(f)(Rs + σ2I)diag(f)H
(13)

with σ2 the variance of the noise. The eigenvalue decomposition can
be written as

(Rs + σ2I) =VsΛsV
H
s (14)

which gives

Ry = diag(f)VsΛsV
H
s diag(f)

H (15)

The eigenvector of the largest eigenvalue of the autocorrelation matrix

v̂y = diag(f)v̂s (16)

with v̂s = [vs(βopt, 0), . . . , vs(βopt, N − 1)] completes the proof.
Therefore, the algorithms for estimating a single frequency in a noise
environment [1, 2, 3, 4] can be applied to the Mth power eigenvector
of the time synchronized autocorrelation matrix that corresponds to the
largest eigenvalue.

Simulation results: The mean square error (MSE) performance versus
SNR of the carrier offset estimators for DSSS systems is shown on Figure
1. The spreading code is a Gold code of degree 7 with lengthN=127. The
number of data bits is set to K=60 and the data bits are modulated by
BPSK (M=2). The same algorithms [1, 2, 3, 4] are applied to the square
power of the received signal (red dashed lines) and the square power of
the eigenvector corresponding to the time synchronized autocorrelation
matrix largest eigenvalue (blue solid lines). Carrier frequency offsets can
be estimated in the range of α∈ [−0.5/M 0.5/M ]. Due to the square
power operation to remove the BPSK modulation, the algorithms can
provide good estimates of the carrier frequency offset in the range of
α∈ [−0.25 0.25]. The frequency offset is set to α= 1.0e−2. A total of
100 Monte Carlo trials are used to generate the simulation results. The
Cramer-Rao bound for the algorithms applied to the square power of the
received signal for a fixed length L=KN is given by [3]

CRB(ρ) =
6

ρL((L)2 − 1)
(17)

with ρ=A2/σ2 the SNR. It can easily be shown that the Cramer-Rao
bound for the algorithms applied to the square power of the eigenvector
is given by

CRB(ρ) =
6

ρL((N)2 − 1)
(18)

The Cramer-Rao bound for the algorithms applied to the square power
of the eigenvector has worse MSE performance than the Cramer-Rao
bound for the algorithms applied to the square power of the received
signal. The algorithm with the addition marker (+) corresponds to the
unweighted phase averager (UPA) by Kay [3]. The algorithm with the
multiplication marker (x) corresponds to the Lank-Reed-Pollon (LRP)
[1] which is equivalent to the unweighted linear predictor by Kay [3].
The algorithm with the circle marker (o) corresponds to the linear
regression (LR) by Tretter [2] which is equivalent to the weighted phase
averager (WPA) by Kay [3]. The algorithm with the square marker (�)
corresponds to the weighted linear predictor (WLP) by Kay [3]. The
algorithm with the triangle marker (O) corresponds to the parabolic
smoothed central finite difference (PSCFD) by Lovell [4].

It can be observed from Figure 1 that the algorithms applied to the
square power of the received signal require higher SNRs than algorithms
applied to the square power of the eigenvector. The best performance is
obtained by the linear regression (LR) algorithm by Tretter [2] which
is equivalent to the weighted phase averager (WPA) by Kay [3]. The
Cramer-Rao bound is attained by these algorithms at around 12 dB on
the square power of the received signal and around -8 dB on the square
power of the eigenvector. Therefore, the proposed method can provide
good estimates of the carrier frequency offset at low SNRs.
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Fig. 1 Performance of the carrier frequency offset estimators for DSSS systems

Conclusion: A robust blind carrier frequency synchronization technique
applicable to direct sequence spread spectrum systems has been
presented. The proposed method extends a blind timing synchronization
technique based on the autocorrelation matrix by applying open-loop
single frequency estimation algorithms to the eigenvector of the time
synchronized autocorrelation matrix largest eigenvalue. A comparison of
different single frequency estimation algorithms were given. Simulation
results have shown that some algorithms attains the Cramer-Rao bound
even at low SNRs. A possible direction for future work is to study carrier
frequency synchronization of DSSS systems in multipath channels.

V. Le Nir and B. Scheers (Communication, Information Systems &
Sensors (CISS), Royal Military Academy (RMA), Brussels, BELGIUM)

E-mail: vincent.lenir@rma.ac.be

References

1 Lank, G. W. and Reed, I. S. and Pollon G. E.: ‘A semicoherent detection
and doppler estimation statistic’, IEEE Transactions on Aerospace and
Electronic Systems, 1973, 9, pp. 151-165

2 Tretter, S. A.: ‘Estimating the frequency of a noisy sinusoid by linear
regression’, IEEE Transactions on Information Theory, 1985, 31, pp. 832-
835

3 Kay, S. M.: ‘A fast and accurate single frequency estimator’, IEEE
Transactions on Acoustics, Speech, Signal Processing, 1989, 37, pp. 1987-
1990

4 Lovell, B. C. and Williamson, R. C.: ‘The Statistical Performance of
Some Instantaneous Frequency Estimators’, IEEE Transactions on Signal
Processing, 1992, 40(7), pp. 1708-1723

5 Viterbi A. J and Viterbi A. M.: ‘Nonlinear Estimation of PSK-Modulated
Carrier Phase with Application to Burst Digital Transmission’, IEEE
Transactions on Information Theory, 1983 29, pp. 543-551

6 Meyr, H. and Moeneclaey, M and Fechtel S. A.: ‘Digital Communication
Receivers: Synchronization, Channel Estimation, and Signal Processing’,
John Wiley & Sons, 1998

7 Tsatsanis, N. K and Giannakis, G. B.: ‘Blind Estimation of direct sequence
spread spectrum signals in multipath’, IEEE Transactions on Signal
Processing, 1997, 40(12), pp. 1241-1251

8 Burel, G.: ‘Detection of Spread Spectrum Transmissions using fluctuations
of correlation estimators’, IEEE International Symposium on Intelligent
Signal Processing and Communication Systems (ISPACS), 2000,
November, Hawaii, USA

9 Burel, G. and Bouder, C.: ‘Blind Estimation of the Pseudo-random
Sequence of a Direct Sequence Spread Spectrum Signal’, IEEE 21st
Century Military Communications Conference (MILCOM), 2000, october,
Los Angeles, USA

10 Bouder, C. and Azou, S. and Burel, G.: ‘A robust synchronisation
procedure for blind estimation of the symbol period and the timing offset
in spread spectrum transmissions’, IEEE International Symposium on
Spread Spectrum Techniques and Applications (ISSSTA), 2002, septembre,
Prague, Czech Republic

11 Bouder, C. and Azou, S. and Burel, G.: ‘Performance Analysis of
a Spreading Sequence Estimator for Spread Spectrum Transmissions’,
Journal of The Franklin Institute, 2004, 341(7), pp. 595-614

2


