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Distributed Power Allocation for Parallel Broadcast
Channels with Only Common Information in Cognitive

Tactical Radio Networks

Vincent Le Nir, Bart Scheers

Abstract—A tactical radio network is a radio network in which a
transmitter broadcasts the same information to its receivers. In this paper,
dynamic spectrum management is studied for multiple cognitive tactical
radio networks coexisting in the same area. First, we consider the problem
of common rate maximization subject to a total power constraint for a
single tactical radio network having multiple receivers and using parallel
sub-channels (parallel multicast channels). Mathematical derivations
show that the optimal power allocation can be found in closedform
under multiple hypothesis testing. An outer loop can be usedto minimize
the power subject to a common rate constraint. Then, we extend the
iterative waterfilling algorithm to the coexistence of multiple cognitive
tactical radio networks without requiring any cooperation between the
different networks. The power allocation is performed autonomously at
the transmit side assuming knowledge of the noise variancesand channel
variations of the network. Simulation results show that the proposed
algorithm is very robust in satisfying these constraints while minimizing
the overall power in various scenarios.

Index Terms—Cognitive tactical radio networks, broadcast channels,
distributed power allocation, iterative water-filling, constrained optimiza-
tion methods.

I. I NTRODUCTION

Tactical radio networks are networks in which information (voice
and packet based data) are conveyed from one transmitter to multiple
receivers. When several coalition nations coexist in the same area,
current technologies do not permit reconfigurability, interoperability
nor coexistence of the radio terminals. Software defined radio has
been developed for reconfigurability of the terminals with software
upgrades and for portability of the waveforms. Cognitive radio
has been introduced by Mitola in 1999 as an extension to soft-
ware defined radio [1]. Cognitive radio has been developed for
spectrum availability recognition, reconfigurability, interoperability
and coexistence between terminals by means of software defined
radio technology, intelligence, awareness and learning [1], [2]. The
fundamental principles of cognitive radio are on one hand toidentify
other radios in the environment that might use the same spectral
resources by means of spectrum sensing and on the other hand to
design a transmission strategy that minimizes interference to and
from these radios by means of dynamic spectrum management. The
major goals of cognitive radio are to provide a high utilization
of the radio spectrum and reliable communications wheneverand
wherever needed [2]. Applications of cognitive radio include, but
are not limited to, tactical radio networks, emergency networks, and
wireless local area networks with high throughput and range.

The broadcast channel has been introduced by Cover in 1972 as
a communication channel in which there is one transmitter and two
or more receivers [3]. The broadcast channel in which independent
messages are sent to the receivers (unicast channel) belongs to the
class of degraded channels in which one user’s signal is a degraded
version of the other signals. Its capacity region is fully characterized
and can be achieved by superposition coding [3], [4]. Contrary to a
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single unicast channel, the sum of unicast channels as well as MIMO
broadcast channels are non-degraded [5], [6].

Previous studies on parallel broadcast channels have focused on
scenarios in which independent messages are sent to the receivers
(parallel unicast channels) [7], [8], [9], [10]. The optimal power
allocation can be achieved by a multilevel water-filling over the
parallel channels, which is an extension of Gallager’s 1968water-
filling strategy for single-user parallel Gaussian channels [11]. Some
other studies have considered parallel broadcast channelsin which
simultaneous common and independent messages are sent to the
receivers [5], [12], [13], or simultaneous common and confidential
messages are sent to the receivers [14].

Contrary to an unicast channel, a tactical radio network canbe
thought as a multicast channel with only common information. The
capacity of a single multicast channel is limited by the capacity of
the worst receiver [4], [15]. However, less work has been done on
parallel multicast channels [16].

In the first part of the paper (Section II), we extend the waterfilling
strategy [11] to multiple receivers considering parallel multicast chan-
nels with perfect channel state information (CSI) at the transmit side.
In this case, the extended waterfilling strategy maximizes the common
rate subject to a power constraint (inner loop) or minimizesthe
power subject to a common rate constraint (outer loop). Mathematical
derivations show that the optimal power allocation can be found in
closed form under multiple hypothesis testing [14], [17], [18].

Distributed multi-user power control has been studied for parallel
interference channels, leading to a common strategy known as itera-
tive water-filling [19], [20], [21]. Distributed algorithms, although
sub-optimal, are preferred to centralized algorithms in practical
scenarios because of their scalability. In the iterative waterfilling
algorithm, each network considers the interference of all other
networks as noise and iteratively performs a waterfilling strategy.
At each iteration, the power spectrum of each network modifies the
interference caused to all other networks. This process is performed
iteratively until the power spectra of all networks converge.

In the second part of the paper (Section III), capitalizing on the
previous results, we introduce an autonomous dynamic spectrum
management algorithm based on iterative waterfilling [19] for multi-
ple cognitive tactical radio networks coexisting in a givenarea and
willing to broadcast a common information (voice, data...)to their
group. The problem can be modeled asN networks, each network
j with a single transmitter willing to send a common message toits
correspondingTj receivers overNc parallel scalar Gaussian sub-
channels. It is assumed that each transmitter has the knowledge
of the channel variations and noise variances in its own network
and iteratively updates its power spectrum until a common rate
constraint for all receivers is satisfied. Although this paper focuses
on multiple cognitive radio networks for tactical communications,
the proposed algorithm can be applied to any application requiring
spectrum management between multiple cognitive radio networks for
parallel multicast channels with only common information.In Section
IV, simulation results are given for multiple scenarios andcompare
the proposed algorithm with theworst sub-channel strategy. Finally,
Section V concludes this paper.

II. SINGLE TACTICAL RADIO NETWORK

Consider aT -receiverNc parallel Gaussian broadcast channel as
shown in Figure 1

yit = hitxi + nit t = 1 . . . T, i = 1 . . . Nc (1)

wherexi is the transmitted signal,nit represents a complex noise
with varianceσ2

it andhit corresponds to the channel seen by receiver
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Fig. 1. T -receiverNc parallel Gaussian broadcast channel

t on tone i. The maximum common information rate that can be
supported by the channel is given by:

max
φ

min
t

Nc
P

i=1

log2(1 +
|hit|

2φi

Γσ2
it

)

subject to
Nc
P

i=1

φi = P tot

(2)

with φi = E[|xi|
2] the variance of the input signal on channeli, φ

the power allocation among all sub-channels,P tot the total power
constraint, andΓ the SNR gap which measures the loss with respect
to theoretically optimum performance [22]. To achieve the maximum
common information rate, the common message codebook cannot be
broken into different codebooks for each channel, i.e. joint encoding
and joint decoding must be performed across all sub-channels [23].
This transmission scheme is referred to as “single codebook, variable
power” transmission [24].

The expression in (2) is the maximization of the minimum of
a set of sums of concave functions ofφi. Since the sum and the
minimum operations preserve concavity, the objective is concave, and
maximizing a concave function yields a convex optimizationproblem.
This max-min optimization problem can be efficiently solvedby the
approach based on minimax hypothesis testing given in [14],[17],
[18]. For two receivers, the optimal power allocation algorithm is
given by three steps:

• Step 1: Findφ(1) given by

max
φ

R01(φ)

subject to
Nc
P

i=1

φi = P tot
(3)

with

R0t(φ) =

Nc
X

i=1

log2(1 +
|hit|

2φi

Γσ2
it

) t = 1, 2 (4)

If R01(φ
(1)) < R02(φ

(1)

i
) then the optimal power allocation is

φopt = φ(1) and finish.
• Step 2: Findφ(2) given by

max
φ

R02(φ)

subject to
Nc
P

i=1

φi = P tot
(5)

If R02(φ
(2)) < R01(φ

(2)) then the optimal power allocation is
φopt = φ(2) and finish.

• Step 3: For a given set of weights{wt} corresponding to the

index n with
2
P

t=1

wt = 1, find φ(n) given by

max
φ

2
P

t=1

wtR0t(φ)

subject to
Nc
P

i=1

φi = P tot

(6)

Search over alln to find nopt that satisfiesR01(φ
(n)) =

R02(φ
(n)), then the optimal power allocation isφopt = φ(nopt)

and finish.

First consider the optimization problem of step 1 and 2. As the
objective function is concave, the power allocation can be derived
by the standard Karush-Kuhn-Tucker (KKT) conditions [25].The
modified Lagrangian function for step 1 and 2 is given by

L(λ, φ) =
Nc
P

i=1

 

log2(1 +
|hit|

2φi

Γσ2
it

) − λφi

!

+ λP tot t = 1, 2

(7)
with λ the Lagrange multiplier associated with the total power
constraint. By taking the derivative of the modified Lagrangian
function with respect toφi, we can solve the KKT system of the
optimization problem. The derivative with respect toφi is given by

∂L(λ,φ)

∂φi

=
1

ln2

1

Γσ2
i1

|hit|2
+ φi

− λ t = 1, 2
(8)

Nulling the derivative gives

∂L(λ, φ)

∂φi

= 0 ⇒
1

Γσ2
it

|hit|2
+ φi

= λln2
|{z}

λ̃

t = 1, 2
. (9)

The optimal power allocation corresponds to Gallager’s water-
filling strategy for single-user parallel Gaussian channels [11]:

• Step 1:

φ
(1)
i =

"

1

λ̃
−

Γσ2
i1

|hi1|2

#+

(10)

• Step 2:

φ
(2)
i =

"

1

λ̃
−

Γσ2
i2

|hi2|2

#+

(11)

We now consider the optimization problem of step 3. As the ob-
jective is a weighted sum of concave functions, the power allocation
can also be derived by the standard KKT conditions. The modified
Lagrangian function for step 3 is given by

L(λ, φ) =
Nc
P

i=1

 

2
P

t=1

wtlog2(1 +
|hit|

2φi

Γσ2
it

) − λφi

!

+ λP tot

(12)
with λ the Lagrange multiplier associated with the total power
constraint. By taking the derivative of the modified Lagrangian
function with respect toφi, we can solve the KKT system of the
optimization problem. The derivative with respect toφi is given by

∂L(λ, φ)

∂φi

=
1

ln2

2
X

t=1

wt

Γσ2
it

|hit|2
+ φi

− λ (13)
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Nulling the derivative gives

∂L(λ, φ)

∂φi

= 0 ⇒
w1

Γσ2
i1

|hi1|2
| {z }

ai

+φi

+
w2

Γσ2
i2

|hi2|2
| {z }

bi

+φi

= λln2
|{z}

λ̃ . (14)

The quadratic equation to be solved is

λ̃φ2
i + (λ̃(ai + bi) − (w1 + w2))φi

+λ̃aibi − (w1bi + w2ai) = 0
. (15)

The discriminant is given by

∆ = λ̃2(ai − bi)
2 + (w1 + w2)

2

−2λ̃(ai − bi)(w1 − w2)
. (16)

The power allocation is given by the positive root

φi =

"

1

2λ̃
+

s

(w1 + w2)
2

4λ̃2
−

(ai − bi)(w1 − w2)

2λ̃
+

(ai − bi)
2

4
−

ai + bi

2

3

5

+ .

(17)
In this formula, the optimal power allocation takes into account

the difference between the water-fill functions and the weights of the
different receivers.

For more than two receivers, the optimal power allocation algo-
rithm is driven by the solutions of higher degree polynomials and
involves more steps under multiple hypothesis testing. Forinstance,
with three receiversT = 3, the optimal power allocation algorithm is
given by seven steps involving the solutions of three linearequations,
three quadratic equations and a cubic equation [26]. Therefore, for
three receiversT = 3 and four receiversT = 4, the optimal power
allocation is a type of water-filling strategy given by the solutions
up to a cubic and a quartic equation respectively. The optimal power
allocation can also be found analytically (the solution is not given in
this paper due to space limitations). WithT > 4, the optimal power
allocation is given by the solutions of polynomial equations up to
degreeT from the formula

T
X

t=1

wt

Γσ2
it

|hit|2
+ φi

= λ̃. (18)

In general, the roots for polynomials with higher degree than four
can not be expressed analytically but can be solved numerically.
Note that to reduce the complexity in a practical algorithm,the
weightswt are taken from a given data set in interval [0 1] withNs

samples, leading to a possible exhaustive search overS = TNT−1
s

possibilities. Therefore, to satisfy the conditions requiring the rates
of the different receivers to be equal, the optimal valuesopt should
minimize the dispersion of the rates

s
opt = min

s

s

1

T

T
P

t=1

[(R0t(φ
(s)) −

1

T

T
P

t=1

R0t(φ
(s)))2]

1

T

T
P

t=1

R0t(φ
(s))

(19)

Figure 2 shows the power control for a single tactical radio
network. An inner loop determines the power allocation maximizing
the common rate subject to a total power constraint. Then, an
outer loop minimizes the power such that a common rate constraint
Rcom is achieved. In the Annex, Algorithm 1 provides the proposed
power allocation for power minimization subject to a commonrate

Inner loop
Findφopt

according to steps

P

yes

no

R0(φ
opt) < Rcom?

P ր

P ց

Fig. 2. Power control for a single tactical radio network

constraint. The inner loop and the outer loop correspond to lines 13-
21 and 6-30 respectively. Note that if all the steps in the multiple
hypothesis testing are needed, the complexity of the algorithm
increases exponentially with the number of receiversO(TNT−1

s ).

III. M ULTIPLE COGNITIVE TACTICAL RADIO NETWORKS

The coexistence of multiple cognitive tactical radio networks is
shown on Figure 3. In each networkj, the Tj receivers are within
the transmission range of the transmitter which broadcastsa common
information. The transmission range is represented by the gray area
around the transmitter. The different networks can interfere with each
other, causing transmission losses if dynamic spectrum management
techniques are not implemented. Our goal is to alleviate this problem
by equipping each terminal with an algorithm which gives the
possibility to optimize its transmission power for each sub-channel.
We assume that the links between the transmitter and the receivers
of each network exhibit quasi-static fading channels, i.e.in which
the coherence times of the fading channels are larger than the time
necessary to compute the algorithm. Such an assumption is motivated
by the fact that tactical radio networks using VHF and low UHFbands
exhibit long coherence times for low mobility patterns. Thereceived
signalsyj,it can be modeled as

yj,it = hjj,itxij +
N
P

k 6=j

hjk,itxik + nj,it i = 1 . . . Nc,

j = 1 . . . N,

t = 1 . . . Tj

(20)

wherenj,it represents a complex noise with varianceσ2
j,it andhjk,it

corresponds to the channel from networkk to j seen by receivert
and tonei. We consider the maximization of the aggregate common
rate subject to a total power constraint per network

max
φ

N
P

j=1

min
t

Nc
P

i=1

log2(1 +
|hjj,it|

2φij

Γ(σ2
j,it +

P

k 6=j

|hjk,it|2φik)
)

subject to
Nc
P

i=1

φij = P tot
j ∀j

(21)

with φ the power allocation among all sub-channels and networks.
Similarly to a single tactical radio network, multiple hypothesis
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Fig. 3. Multiple cognitive radio networks for tactical communications

testing can be used to transform the above problem into different

steps according to different values ofwjt, with
Tj
P

t=1

wjt = 1, ∀j. Note

that the number of steps under multiple hypothesis testing increases
exponentially with the number of networksN . In the following, we
omit the steps under multiple hypothesis testing for clarity. Therefore,
(21) reduces to the following problem

max
φ

N
P

j=1

Tj
P

t=1

wjtR0jt(φ)

subject to
Nc
P

i=1

φij = P tot
j ∀j

(22)

with multiple conditions according to the weightswjt, ∀t, j on the
rates

R0jt(φ) =
Nc
P

i=1

log2(1 +
|hjj,it|

2φij

Γ(σ2
j,it +

P

k 6=j

|hjk,it|2φik)
) ∀t, j

(23)
Considering jointly the maximization of the aggregate common

rate subject to a total power constraint per network in a centralized
algorithm is an extensive task, since it would require the knowledge of
the channel variations of all the interference termshjk,it ∀i, j, t, k.
This knowledge can be acquired through a feedback channel from
the receivers to the transmitter of each network assuming that the
acquisition time is much lower than the coherence time of the
channel fading. To this end, each terminal must be equipped with
a spectrum sensing function to estimate the noise variancesand a
channel estimation function to estimate its channel variations. This
information can be further transmitted to a centralized unit. Moreover,
even if a centralized cognitive manager was able to collect all the
channel state information (CSI) within and between the different
networks, solving (22) would require an exhaustive search over all
possibleφij ’s, or a more efficient genetic algorithm.

Distributed algorithms, although sub-optimal, are preferred to
centralized algorithms for the coexistence between several tactical
radio networks because of their scalability. Therefore, itis assumed
that each transmitter has the knowledge of the channel variations in
its own networkj (hjk,it, ∀k = j, i, t). We propose a sub-optimal
distributed algorithm for power minimization subject to a common
rate constraint based on the iterative water-filling algorithm initially
derived for dynamic spectrum management in digital subscriber line
(DSL) [19]. Note that a more robust iterative water-filling algorithm
such as [20], [21] can also be applied in case of imperfect channel

and noise variance information. Each update of one network’s water-
filling affects the interference of the other networks and this process
is repeated iteratively between the networks until the power allocation
of all networks converge and reach a Nash equilibrium. As thepower
updates between networks can be performed asynchronously,an
iterative water-filling based algorithm is very attractivewhen multiple
tactical radio networks coexist in the same area. Let us derive the
modified Lagrangian function of (22)

L(λ, φ) =

Nc
P

i=1

 

N
P

j=1

Tj
P

t=1

wjtlog2(1 +
|hjj,it|

2φij

Γ(σ2
j,it +

P

k 6=j

|hjk,it|2φik)
) −

N
P

j=1

λjφij

!

+
N
P

j=1

λjP
tot
j

(24)
in which λ are the Lagrange multipliers for all networks. Assuming
that the noise variances and the channel variations have been esti-
mated by the receivers and given to their transmitter, we cansolve
the KKT system of the optimization problem by taking the derivative
of the modified Lagrangian function with respect toφij

∂L(λ, φ)

∂φij

=
1

ln2

Tj
P

t=1

wjt

Γ(
σ2

j,it

|hjj,it|2
+
P

k 6=j

|hjk,it|
2

|hjj,it|2
φik) + φij

− λj
.

(25)

Therefore, after collecting the noise variances and the channel
variations of its network, each transmitter has to apply Algorithm
1 autonomously and to update its power allocation regularlyto reach
an equilibrium between the different networks. As shown on Figure
4, within each network, an inner loop determines the power allocation
maximizing the common rate subject to a total power constraint.
This process is updated regularly between all the differentnetworks
until they reach a Nash equilibrium. Finally, an outer loop minimizes
the power such that a common rate constraint is achieved for each
network. The algorithm for the coexistence of multiple tactical radio
networks is presented in the Annex (Algorithm 2).

Inner loop
Findφopt

1
according to steps

Inner loop
Findφopt

N
according to steps

P1 PNPj

Iterative

. . . . . .

. . . . . .

yes

no

yes

no

. . .

R01(φ
opt
1

) < Rcom? R0N (φopt
N

) < Rcom?
P1 ր

P1 ց

PN ր

PN ց

Fig. 4. Distributed power control for multiple tactical radio networks
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IV. SIMULATION RESULTS

For the simulations, the log-distance path loss model is used to
measure the path loss between the transmitter and the receivers [27]:

PL(dB) = PL(d0) + 10nlog10(
d

d0
) (26)

with n the path loss exponent,d is the distance between the
transmitter and the receiver, andd0 the close-in reference distance.
The reference path loss is calculated using the free space path loss
formula:

PL(d0) = −32.44 − 20log10(fc) − 20log10(d0) (27)

where fc is the carrier frequency in MHz andd0 the reference
distance in kilometers. The transmitter and the receivers are placed
randomly in a square area of1 km2. The carrier frequency is chosen
to be in the very high frequency (VHF) band (fc = 80 MHz). The
SNR gap for an uncoded quadrature amplitude modulation (QAM)
to operate at a symbol error rate10−7 is Γ = 9.8 dB. The sub-
channel bandwidth is∆f = 25 kHz, the path loss exponent is
n = 4, reference distanced0 = 20 meters and thermal noise with
the following expression:

σ
2
n = −204dB/Hz+ 10log10(∆f) (28)

which gives a noise variance per sub-channel of approximately σ2
n =

10−16.

A. Single Tactical Radio Network

Simulation results for a single tactical radio network are performed
using Monte Carlo trials for the locations of the transmitters and the
receivers withT = 2 receivers andNc = 4 sub-channels and 2
particular scenarios. The maximum available power at the transmitter
is P tot = 1W . In the first scenario (left part of Figure 5), the first
receiver sees a small noise on the first three sub-channels and a very
strong noise on the 4th sub-channel, while the second receiver sees a
very strong noise on the 1st sub-channel and a small noise on the last
three sub-channels. In the second scenario (right part of Figure 5),
we take an extreme situation in which the first receiver sees avery
strong noise on the 3rd and 4th sub-channels and the second receiver
sees a very strong noise on the 1st and 2nd sub-channels. The different
noises seen by the different receivers can be thought as sub-channel
variations depending on the location, a sub-channel occupied by a
primary transmitter, a jammer, or different channel characteristics.

In the first set of simulations, we compare Algorithm 1 with
the worst sub-channel strategy for the minimization of the power
subject to a common rate constraint. Theworst sub-channel strategy
corresponds to the strategy in which the common message codebook
is broken into different codebooks for each sub-channel, therefore the
common rate is limited by the weakest receiver in each sub-channel
[23]. This transmission scheme is referred to as “multiple codebook,
variable power” transmission [24]. In theworst sub-channel strategy,
the water-filling is performed on the worst sub-channel conditions
considering both receivers. More precisely, the valuesai and bi are
compared for each sub-channel and the greatest value is selected for
the water-filling. For theworst sub-channel strategy, the inner loop
maximizes the rate of the superposition of the receiver’s worst sub-
channels given by

max
φ

Nc
P

i=1

min
t

log2(1 +
|hit|

2φi

Γσ2
it

)

subject to
Nc
P

i=1

φi = P tot

. (29)

1 2 3 4

: First receiver

: Second receiver

1 2 3 4

: First receiver

: Second receiver

Fig. 5. Water-fill functions for two scenarios over four sub-channels
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Fig. 6. Results on the power minimization subject to a commonrate
constraint for both scenarios

Figure 6 shows the results of the power minimization subjectto a
common rate constraint ranging fromRcom = 2 kbps toRcom = 512
kbps over103 Monte Carlo trials for both scenarios. Algorithm 1
provides the minimum power for all scenarios compared to theworst
sub-channel strategy as this is the optimal strategy. Moreover, for the
scenario 2, theworst sub-channel strategy uses the maximum power
for all common rate constraints.

B. Multiple cognitive tactical radio networks

In the second set of simulations, we compare Algorithm 2 withthe
worst sub-channel strategy for the minimization of the power subject
to a common rate constraint withN = 2 networks whose transmitters
and receivers are in a same square area of1 km2. To highlight the
robustness of our algorithm, we take an extreme scenario in which
the receivers see a different noiseσ2

n on theirNc = 4 sub-channels
(as shown in Figure 7). In the first network, a very strong noise
(σ2

n = 10−9) is seen on the 4th sub-channel by the first receiver and
the 1st sub-channel by the second receiver. In the second network, a
very strong noise (σ2

n = 10−9) is seen on the 3th sub-channel by the
first receiver and the 2nd sub-channel by the second receiver. Figure 8
shows the results of the power minimization subject to a common rate
constraint ranging fromRcom = 2 kbps toRcom = 512 kbps over
103 Monte Carlo trials. The results are averaged for both networks. In
this scenario, it can be seen that Algorithm 2 outperforms the worst
sub-channel strategy. Therefore, in practical scenarios in which the
interference temperature varies along the sub-channel andthe receiver
locations, Algorithm 2 provides a novel distributed strategy to find
the power allocation minimizing the power subject to a common rate
constraint. Since it is based on closed-form expressions, the algorithm
has reasonable complexity for a low number of receivers. However,
the search for the best set of weights require an exhaustive search
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Fig. 7. Water-fill functions for two networks over four sub-channels
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Fig. 8. Results on the power minimization subject to a commonrate
constraint averaged for two networks

over all possible weights. Therefore, to reduce the complexity in a
practical algorithm, the weightswt are taken from a given data set
in interval [0 1].

V. CONCLUSION

In this paper, dynamic spectrum management was studied for
multiple cognitive tactical radio networks coexisting in the same
area. First, we have considered the problem of power minimization
subject to a common rate constraint for a single tactical radio network
with multiple receivers over parallel channels (parallel multicast
channels). Then, we have extended the iterative waterfilling algorithm
to multiple receivers for the coexistence of multiple cognitive tactical
radio networks assuming knowledge of the noise variances and
channel variations of the network. Simulation results haveshown that
the proposed algorithm is very robust in satisfying these constraints
while minimizing the overall power in various scenarios.
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ANNEX

Algorithm 1 Minimization of the power subject to a common rate
constraint
1 init P = 10−9

2 init c = 2
3 init p = 0
4 init Rt = 0 ∀t
5 while |R0(φopt) − Rcom| > ǫ
6 for all steps
7 init wt ∀t according to step
8 init λ = 10−9

9 init d = 2
10 init b = 0
11 init φi = 0 ∀i

12 while |
Nc
P

i=1
φi − P | > ǫ

13 Calculateφ according to the roots of (18)

14 if
Nc
P

i=1
φi − P < 0

15 b = b + 1
16 λ = λ/d
17 d = d − 1/2b

18 end if
19 λ = λ × d
20 end while
21 If condition satisfied onR0t(φ

opt) ∀t exit step loop
22 end for
23 if R0(φopt) − Rcom > 0
24 p = p + 1
25 P = P/c
26 c = c − 1/2p

27 end if
28 P = P × c
29 end while

Algorithm 2 Distributed power allocation for minimization of the
power subject to a common rate constraint

1 init Pj = 10−9 ∀j
2 init cj = 2 ∀j
3 init pj = 0 ∀j
4 init Rjt = 0 ∀t, j
5 while |R0j(φ

opt

j
) − Rcom| > ǫ ∀j

6 for iteration=1 to 20
7 for j=1 to N
8 for all steps
9 init wjt ∀t according to step
10 init λ = 10−9

11 init d = 2
12 init b = 0
13 init φij = 0 ∀i

14 while |
Nc
P

i=1
φij − Pj | > ǫ

15 Calculateφ
j

according to the roots of (18)

16 if
Nc
P

i=1
φij − Pj < 0

17 b = b + 1
18 λ = λ/d
19 d = d − 1/2b

20 end if
21 λ = λ × d
22 end while
23 If condition satisfied onR0jt(φ

opt

j
) ∀t exit step loop

24 end for
25 end for
26 end for
27 for j=1 to N
28 if R0j(φ

opt

j
) − Rcom > 0

29 pj = pj + 1
30 Pj = Pj/cj

31 cj = cj − 1/2pj

32 end if
33 Pj = Pj × cj

34 end for
35 end while


