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Abstract—A tactical radio network is a radio network in which a
transmitter broadcasts the same information to its receives. In this paper,
dynamic spectrum management is studied for multiple cognive tactical
radio networks coexisting in the same area. First, we consét the problem
of common rate maximization subject to a total power constrant for a
single tactical radio network having multiple receivers ard using parallel
sub-channels (parallel multicast channels). Mathematida derivations
show that the optimal power allocation can be found in closedform
under multiple hypothesis testing. An outer loop can be usetb minimize
the power subject to a common rate constraint. Then, we exteh the
iterative waterfilling algorithm to the coexistence of multple cognitive
tactical radio networks without requiring any cooperation between the
different networks. The power allocation is performed autaomously at
the transmit side assuming knowledge of the noise variancesd channel
variations of the network. Simulation results show that the proposed
algorithm is very robust in satisfying these constraints wilile minimizing
the overall power in various scenarios.

Index Terms—Cognitive tactical radio networks, broadcast channels,
distributed power allocation, iterative water-filling, constrained optimiza-
tion methods.

I. INTRODUCTION

Tactical radio networks are networks in which informatiaoi¢e
and packet based data) are conveyed from one transmitteultiple
receivers. When several coalition nations coexist in theesarea,
current technologies do not permit reconfigurability, inteerability
nor coexistence of the radio terminals. Software definedorads
been developed for reconfigurability of the terminals witftware

upgrades and for portability of the waveforms. Cognitivelioa

single unicast channel, the sum of unicast channels as s/&lllslO
broadcast channels are non-degraded [5], [6].

Previous studies on parallel broadcast channels have ddcos
scenarios in which independent messages are sent to thigersce
(parallel unicast channels) [7], [8], [9], [10]. The optimaower
allocation can be achieved by a multilevel water-filling owbe
parallel channels, which is an extension of Gallager's 196&er-
filling strategy for single-user parallel Gaussian chasifgl]. Some
other studies have considered parallel broadcast chamimeldich

simultaneous common and independent messages are seng to th

receivers [5], [12], [13], or simultaneous common and canftdhl
messages are sent to the receivers [14].

Contrary to an unicast channel, a tactical radio network fan
thought as a multicast channel with only common informatithe
capacity of a single multicast channel is limited by the céyaof
the worst receiver [4], [15]. However, less work has been done on
parallel multicast channels [16].

In the first part of the paper (Section Il), we extend the wdlieg
strategy [11] to multiple receivers considering parallellticast chan-
nels with perfect channel state information (CSl) at thegmait side.
In this case, the extended waterfilling strategy maximikessommon
rate subject to a power constraint (inner loop) or minimities
power subject to a common rate constraint (outer loop). Batitical
derivations show that the optimal power allocation can heébin
closed form under multiple hypothesis testing [14], [178]

Distributed multi-user power control has been studied farafel
interference channels, leading to a common strategy kn@niteea-
tive water-filling [19], [20], [21]. Distributed algoriths) although
sub-optimal, are preferred to centralized algorithms imacpcal
scenarios because of their scalability. In the iterativeevi#ling
algorithm, each network considers the interference of d#fieo
networks as noise and iteratively performs a waterfillingtsgy.
At each iteration, the power spectrum of each network madifie
interference caused to all other networks. This procesgi®pned

has been introduced by Mitola in 1999 as an extension to softeratively until the power spectra of all networks conerg
ware defined radio [1]. Cognitive radio has been developed fo In the second part of the paper (Section IIl), capitalizimgthe

spectrum availability recognition, reconfigurability,ténoperability

previous results, we introduce an autonomous dynamic spect

and coexistence between terminals by means of softwareedefirmanagement algorithm based on iterative waterfilling [I8]rfulti-

radio technology, intelligence, awareness and learnifg[®]. The
fundamental principles of cognitive radio are on one hanidi¢atify

ple cognitive tactical radio networks coexisting in a giverea and
willing to broadcast a common information (voice, dateto.)their

other radios in the environment that might use the same rgppecgroup. The problem can be modeled Msnetworks, each network
resources by means of spectrum sensing and on the other dand with a single transmitter willing to send a common messagisto

design a transmission strategy that minimizes interferetoc and

from these radios by means of dynamic spectrum managembat.

major goals of cognitive radio are to provide a high utiliaat
of the radio spectrum and reliable communications whenewet
wherever needed [2]. Applications of cognitive radio imtgy but
are not limited to, tactical radio networks, emergency ks, and
wireless local area networks with high throughput and range

corresponding?’; receivers overN,. parallel scalar Gaussian sub-

Thannels. It is assumed that each transmitter has the kdgale

of the channel variations and noise variances in its own ortw
and iteratively updates its power spectrum until a commae ra
constraint for all receivers is satisfied. Although this @afocuses
on multiple cognitive radio networks for tactical commuations,

the proposed algorithm can be applied to any applicationireg

The broadcast channel has been introduced by Cover in 1972sggctrum management between multiple cognitive radio ovésvfor

a communication channel in which there is one transmittel taro
or more receivers [3]. The broadcast channel in which indegst
messages are sent to the receivers (unicast channel) betortge
class of degraded channels in which one user’s signal is eaded
version of the other signals. Its capacity region is fullycicterized
and can be achieved by superposition coding [3], [4]. Contta a
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parallel multicast channels with only common informatibnSection
IV, simulation results are given for multiple scenarios aminpare

the proposed algorithm with th&orst sub-channel strategy. Finally,

Section V concludes this paper.

Il. SINGLE TACTICAL RADIO NETWORK
Consider ar'-receiverN, parallel Gaussian broadcast channel as
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with variances2 andh;; corresponds to the channel seen by receiver
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Fig. 1. T-receiver N, parallel Gaussian broadcast channel First consider the optimization problem of step 1 and 2. As th

objective function is concave, the power allocation can bevdd
by the standard Karush-Kuhn-Tucker (KKT) conditions [2%he

t on tone:. The maximum common information rate that can medmed Lagrangian function for step 1 and 2 is given by

supported by the channel is given by: N. it >
2 L\ @) = 3 | 10g2(1+ —5—) = Adi | + AP t=1,2
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- . " (2) with X the Lagrange multiplier associated with the total power
subject toy |, ¢; = P constraint. By taking the derivative of the modified Lagriamng

i=1

function with respect tap;, we can solve the KKT system of the

with ¢; = E[|zi|?] the variance of the input signal on chanrigly —OpPtimization problem. The derivative with respectdpis given by
i . ot o
the power allocation among all sub-channg®?* the total power OL(\, &) 1 1

constraint, and” the SNR gap which measures the loss with respect RE—— —)\ t=1.2
to theoretically optimum performance [22]. To achieve theximum 0¢; In2 FLfl o, ' (8)
common information rate, the common message codebook theno [hit |2 !
broken into different codebooks for each channel, i.e.tjeircoding ) o .
and joint decoding must be performed across all sub-charjaa]. Nulling the derivative gives
This transmission scheme is referred to as “single codebaolable oL
, o (A, 8) 1

power” transmission [24]. ————=0=>—5——=AIn2 t=1,2

The expression in (2) is the maximization of the minimum of 0 ﬂ_ﬂﬁ \;_, ' ©)
a set of sums of concave functions ¢f. Since the sum and the Rt |2 '

minimum operations preserve concavity, the objective icawe, and
maximizing a concave function yields a convex optimizapooblem.
This max-min optimization problem can be efficiently solmdthe

The optimal power allocation corresponds to Gallager'sewat
filling strategy for single-user parallel Gaussian chasigl]:

approach based on minimax hypothesis testing given in [14], « Step 1:
[18]. For two receivers, the optimal power allocation alton is 1 121"
; . (1) _ i1
given by three steps: b, = X TP (10)
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We now consider the optimization problem of step 3. As the ob-
jective is a weighted sum of concave functions, the powercation
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with \ the Lagrange multiplier associated with the total power
constraint. By taking the derivative of the modified Lagramng

max Roa(¢) function with respect tap;, we can solve the KKT system of the
- N, (5)  optimization problem. The derivative with respectdpis given b
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15
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42 2\ + 4 2 Fig. 2. Power control for a single tactical radio network
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In this formula, the optimal power allocation takes into @aut
the difference between the water-fill functions and the Weigf the
different receivers.

For more than two receivers, the optimal power allocatiaqyoal
rithm is driven by the solutions of higher degree polynomiahd
involves more steps under multiple hypothesis testing.ifstance,
with three receiverd” = 3, the optimal power allocation algorithm is Il. MULTIPLE COGNITIVE TACTICAL RADIO NETWORKS
given by seven steps involving the solutions of three liregprations,  The coexistence of multiple cognitive tactical radio netwois
three quadratic equations and a cubic equation [26]. Theefor shown on Figure 3. In each netwogk the T} receivers are within
three receiverd” = 3 and four receiverd’ = 4, the optimal power the transmission range of the transmitter which broad@astsnmon
allocation is a type of water-filling strategy given by thdusimns information. The transmission range is represented by thg area
up to a cubic and a quartic equation respectively. The optpoaer around the transmitter. The different networks can interfeith each
allocation can also be found analytically (the solutionds$ given in  other, causing transmission losses if dynamic spectrumagenent
this paper due to space limitations). With> 4, the optimal power techniques are not implemented. Our goal is to alleviateghbblem
allocation is given by the solutions of polynomial equasiamp to by equipping each terminal with an algorithm which gives the
degreeT" from the formula possibility to optimize its transmission power for each-shlannel.

r We assume that the links between the transmitter and théveese
Z Wt (18) of each network exhibit quasi-static fading channels, inewhich
t=1

constraint. The inner loop and the outer loop corresponihas|13-
21 and 6-30 respectively. Note that if all the steps in thetiplel
hypothesis testing are needed, the complexity of the dhguri
increases exponentially with the number of receive(d NI —1).

I
o

T'o? the coherence times of the fading channels are larger thetirtte
|h AE + @i necessary to compute the algorithm. Such an assumptiontigateal
In general, the roots for polynomials with higher degreetfaur by the fact that tactical radio networks using VHF and low Ubéads

can not be expressed analytically but can be solved nu rﬂyricae.Xh'b't long coherence times for low mobility patterns. Tkeeived

Note that to reduce the complexity in a practical algorithtme signalsy;;.. can be modeled as

weightsw; are taken from a given data set in interval [0 1] with N .
g k 9 o1 Yjit = NjjaeTiz + 3 gkt +ng0e i =1...

samples, leading to a possible exhaustive search SverT NI ! iz Ne, 20
possibilities. Therefore, to satisfy the conditions reimg the rates ' i=1...N, (20)
of the different receivers to be equal, the optimal vast®& should t=1...T;

minimize the dispersion of the rates ) ) )
wheren; ;; represents a complex noise with vanaraxfgt andhik ;¢

corresponds to the channel from netwdrko j seen by receivet

l XT: [(ROt(¢(S)) . l i ROt((b(s)))g] and tone:. We consider the maximization of the aggregate common
opt . Tz - Tz - rate subject to a total power constraint per network
s” =min G (19)
szot(g(s)) N Ne el i
=t max > min > loga(1 + =g )
Figure 2 shows the power control for a single tactical radio ¢ j=1 t i=1 NG g |hjk,it > Pir) (21)
J

network. An inner loop determines the power allocation nmézing
the common rate subject to a total power constraint. Then, an subject toz ¢ij = P{'Vj

outer loop minimizes the power such that a common rate cinstr =1

R°™ is achieved. In the Annex, Algorithm 1 provides the proposedith ¢ the power allocation among all sub-channels and networks.
power allocation for power minimization subject to a commate Similarly to a single tactical radio network, multiple hyhesis
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Fig. 3. Multiple cognitive radio networks for tactical cornmications

testing can be used to transform the above problem intordiffe

Ty
steps according to different values«wof;, with > w;; = 1, Vj. Note

that the number of steps under multiple hyt[;()lthesis testingeases
exponentially with the number of network€. In the following, we
omit the steps under multiple hypothesis testing for glafiherefore,
(21) reduces to the following problem

3

X

II@;

1

wji Roji (¢)

t=1

. 22)
subject to} . ¢i; = P Vj
i=1
with multiple conditions according to the weights;;, V¢, j on the
rates
|hjjitl” $is
oi it 2 [hjkitlir)
k#j

Roje(9) = iNch loga (1 + T

)

Vt, j
(23)

Considering jointly the maximization of the aggregate camm
rate subject to a total power constraint per network in areéinéd
algorithm is an extensive task, since it would require th@¥edge of
the channel variations of all the interference terns ;+ Vi, 7,¢, k.

This knowledge can be acquired through a feedback chanoel fr
the receivers to the transmitter of each network assumiag ttie

acquisition time is much lower than the coherence time of the

channel fading. To this end, each terminal must be equippéd w
a spectrum sensing function to estimate the noise variaandsa
channel estimation function to estimate its channel varat This
information can be further transmitted to a centralized.Wioreover,
even if a centralized cognitive manager was able to collécthe
channel state information (CSI) within and between theeddiit
networks, solving (22) would require an exhaustive seangr all
possibleg;;’s, or a more efficient genetic algorithm.

Distributed algorithms, although sub-optimal, are pnefér to
centralized algorithms for the coexistence between skvaectcal
radio networks because of their scalability. Thereforés iassumed
that each transmitter has the knowledge of the channeltiar&in
its own networkj (hjk,it, Yk = j,1,t). We propose a sub-optimal
distributed algorithm for power minimization subject to antmon
rate constraint based on the iterative water-filling aldponi initially
derived for dynamic spectrum management in digital subsecriine
(DSL) [19]. Note that a more robust iterative water-fillingarithm
such as [20], [21] can also be applied in case of imperfechodla

and noise variance information. Each update of one netwavkter-
filling affects the interference of the other networks anid firocess
is repeated iteratively between the networks until the padlecation
of all networks converge and reach a Nash equilibrium. Agtheer
updates between networks can be performed asynchroncasly,
iterative water-filling based algorithm is very attractiveen multiple
tactical radio networks coexist in the same area. Let usveldtie
modified Lagrangian function of (22)

LA g) =
Ne (N5 |hjsael* i N
wj¢loga (1 + — - Ajbij
i=1 <jzltl #108:( F(U]z,it""];v'hjk,itquik)) y; 191
N J
+ 2 NP
=1
' (24)

in which A are the Lagrange multipliers for all networks. Assuming
that the noise variances and the channel variations have éste
mated by the receivers and given to their transmitter, we stive
the KKT system of the optimization problem by taking the dative

of the modified Lagrangian function with respectdg

8L(A7£) 1 % Wit \
Odi; ﬁ1&:1 o2 [Pk ’Lt|2 A
r AL 2o Dir) + Gij
(|h.7'.7',it|2 kgy |hjj,it]? )+ by
(25)

Therefore, after collecting the noise variances and thenrotla
variations of its network, each transmitter has to apply ofillhm
1 autonomously and to update its power allocation regultariyeach
an equilibrium between the different networks. As shown aufe
4, within each network, an inner loop determines the powecation
maximizing the common rate subject to a total power condtrai
This process is updated regularly between all the diffeneivorks
until they reach a Nash equilibrium. Finally, an outer loojmimizes
the power such that a common rate constraint is achievedafch e
network. The algorithm for the coexistence of multiple ieedtradio
networks is presented in the Annex (Algorithm 2).
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Fig. 4. Distributed power control for multiple tactical rachetworks



IV. SIMULATION RESULTS

For the simulations, the log-distance path loss model isl use
measure the path loss between the transmitter and the eec¢®7]:

PL(dB) = PL(do) + 1on|og10(di) (26)
0

with n the path loss exponentd is the distance between the
transmitter and the receiver, ad the close-in reference distance.

The reference path loss is calculated using the free spabelqss
formula:

PL(do)

—32.44 — 20log,, (fe) — 20l0g,,(do) 27)

where f. is the carrier frequency in MHz and, the reference
distance in kilometers. The transmitter and the receivezsptaced

randomly in a square area dfkm?. The carrier frequency is chosen

to be in the very high frequency (VHF) band.(= 80 MHz). The

SNR gap for an uncoded quadrature amplitude modulation (RQAM

to operate at a symbol error rat®~" is T' = 9.8 dB. The sub-

channel bandwidth isAf = 25 kHz, the path loss exponent is
n = 4, reference distancd, = 20 meters and thermal noise with

the following expression:

02 = —204dB/Hz 4 10log, , (A f) (28)

which gives a noise variance per sub-channel of approxignate =
1071°,

A. Single Tactical Radio Network

Simulation results for a single tactical radio network aeefgrmed
using Monte Carlo trials for the locations of the transmgtend the

receivers withT = 2 receivers andV. = 4 sub-channels and 2

particular scenarios. The maximum available power at @yestnitter

is P** = 1W. In the first scenario (left part of Figure 5), the firstﬁ

receiver sees a small noise on the first three sub-channgla aery

strong noise on the™sub-channel, while the second receiver sees b-channel strateay as this is the optimal strateav. Moreover. for the
eYsub-channel and a small noise on the Ias%u gy P 9y !

very strong noise on th
three sub-channels. In the second scenario (right part guir&i5),
we take an extreme situation in which the first receiver seesra

[4: First receiver
N ': Second receiver

NIAIZ

[ First receiver
XN': Second receiver

=

KXAKXA
1 2 3 4 1 2 3 4

Fig. 5. Water-fill functions for two scenarios over four sti|mnnels

—+— Algorithm 1 scenario 1
—6— Worst sub—channel scenario 1
- +- Algorithm 1 scenario 2
- ©- Worst sub—channel scenario 2
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Common Rate (kbps)
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Fig. 6. Results on the power minimization subject to a commate
constraint for both scenarios

Figure 6 shows the results of the power minimization subiect
ommon rate constraint ranging fraRf°™ = 2 kbps toR“*"" = 512
bps over10® Monte Carlo trials for both scenarios. Algorithm 1
parlovides the minimum power for all scenarios compared toatbrest
scenario 2, thevorst sub-channel strategy uses the maximum power
for all common rate constraints.

strong noise on the'8and 4" sub-channels and the second receiver ) » ] ]
sees a very strong noise on thédnd 29 sub-channels. The different B. Multiple cognitive tactical radio networks

noises seen by the different receivers can be thought astarnel
variations depending on the location, a sub-channel oedupy a
primary transmitter, a jammer, or different channel chemastics.

In the second set of simulations, we compare Algorithm 2 with
worst sub-channel strategy for the minimization of the power subject
to a common rate constraint wifi = 2 networks whose transmitters

In the first set of simulations, we compare Algorithm 1 wittand receivers are in a same square area kin?. To highlight the
the worst sub-channel strategy for the minimization of the powerrobustness of our algorithm, we take an extreme scenariohiohw

subject to a common rate constraint. Therst sub-channel strategy
corresponds to the strategy in which the common messagdaokle
is broken into different codebooks for each sub-channetefiore the
common rate is limited by the weakest receiver in each sl
[23]. This transmission scheme is referred to as “multigdabook,
variable power” transmission [24]. In thworst sub-channel strategy,
the water-filling is performed on the worst sub-channel diorbs
considering both receivers. More precisely, the valugandb; are
compared for each sub-channel and the greatest value texkfer
the water-filling. For theworst sub-channel strategy, the inner loop
maximizes the rate of the superposition of the receiver'sstvsub-
channels given by

Pt ] s
To? )

it

Ne
mfxz mtin log2 (1 +
L i=1 N, (29)
subject to> | ¢; = P*"
=1

7

the receivers see a different noisg on their N. = 4 sub-channels
(as shown in Figure 7). In the first network, a very strong @ois
(02 = 107?) is seen on the4 sub-channel by the first receiver and
the T** sub-channel by the second receiver. In the second network, a
very strong noiseq> = 107°) is seen on the'3 sub-channel by the
first receiver and the? sub-channel by the second receiver. Figure 8
shows the results of the power minimization subject to a commate
constraint ranging fronR’™ = 2 kbps to R°°"* = 512 kbps over
10® Monte Carlo trials. The results are averaged for both neksvdn
this scenario, it can be seen that Algorithm 2 outperforneswibrst
sub-channel strategy. Therefore, in practical scenarios in which the
interference temperature varies along the sub-channeghaneceiver
locations, Algorithm 2 provides a novel distributed stggteo find
the power allocation minimizing the power subject to a commeate
constraint. Since it is based on closed-form expressibesalgorithm
has reasonable complexity for a low number of receivers. édew
the search for the best set of weights require an exhaustizels
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Fig. 8. Results on the power minimization subject to a commate
constraint averaged for two networks

over all possible weights. Therefore, to reduce the coniylér a

practical algorithm, the weights); are taken from a given data set

in interval [0 1].

V. CONCLUSION

[6] H.Weingarten, Y. Steinbergand, and S. Shamai, “The CiapRegion of
the Gaussian Multiple-Input Multiple-Output Broadcasta@hel,”|EEE
Transactions on Information Theory, vol. 52, no. 9, pp. 3936—-3964, Sep.
2006.

[7] D. N. Tse, “Optimal Power Allocation over Parallel GaiassBroadcast
Channels,"IEEE International Symposium on Information Theory, ISIT,
Jul. 1997.

[8] A. J. Goldsmith and M. Effros, “The Capacity Region of Bdrast
Channels with Intersymbol Interference and Colored Ganssloise,”
|EEE Transactions on Information Theory, vol. 47, no. 1, pp. 219-240,
Jan. 2001.

N. Jindal, W. Rhee, S. Vishwanath, S. Jafar, and A. GoltsniSum
Power lterative Water-filling for Multi-Antenna Gaussianro&dcast
Channels,”|EEE Transactions on Information Theory, vol. 51, no. 4,
pp. 1570-1580, Apr. 2005.

[9

—

[10] V. Le Nir, M. Moonen, J. Verlinden, and M. Guenach, “Opél power

allocation for downstream xDSL with per-modem total powanstraints

: Broadcast Channel Optimal Spectrum Balancing (BC-OSHIEE
Transactions on Sgnal Processing, vol. 57, no. 5, pp. 690-697, Feb.
2009.

[11] R. G. Gallager, “Information Theory and Reliable Comriuation,” New

York: John Wley & Sons, 1968.

[12] R. H. Gohary and T. N. Davidson, “On Power Allocation fearallel

Gaussian Broadcast Channels with Common Informati@JRAS P
Journal on Wireless Communications and Networking, Article 1D
482520, 2009.

[13] ——, “The capacity region of a product of two unmatchedu€san

broadcast channels with three particular messages and m@ommes-
sage,”Available at: http://arxiv.org/abs/0911.0660, 2009.

[14] Y. Liang, H. V. Poor, and S. Shamai, “Secure CommunicatDver

Fading Channels,1EEE Transactions on Information Theory, vol. 54,
no. 6, pp. 2470-2492, May 2008.

[15] N. Jindal and Z. Q. Luo, “Capacity Limits of Multiple Aetna Mul-

ticast,” in Proc. |EEE Int. Symp. Information Theory IS T 06, Seatle,
USA., Jul. 2006.

[16] N. D. Sidiropoulos, T. N. Davidson, and Z. Q. Luo, “Trams Beam-

forming for Physical-Layer Multicasting JEEE Transactions on Sgnal
Processing, vol. 54, no. 6, pp. 2239-2251, Jun. 2006.

1 Y. Liang, V. V. Veeravalli, and V. Poor, “Resource aliion for Wireless
Fading Relay Channels: Max-Min Solution/EEE Transactions on
Information Theory, vol. 53, no. 10, pp. 3432-3453, Oct. 2007.

[18] H. V. Poor, “An Introduction to Signal Detection and Hsation, 2nd
In this paper, dynamic spectrum management was studied for

Edition,” New York: Springer-Verlag, 1994.

multiple cognitive tactical radio networks coexisting ihetsame [19] w. yu, “Competition and Cooperation in Multi-user Coranication
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channel variations of the network. Simulation results rehvewvn that
the proposed algorithm is very robust in satisfying thesestraints
while minimizing the overall power in various scenarios.
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ANNEX

Algorithm 1 Minimization of the power subject to a common rate

constraint
1init P=10""°
2initec=2
3initp=0
4init Ry =0 Vt
5 while |Rg(¢°P*) — R°°™| > €
6 for all steps
7 init w; Vt according to step
8 init A = 1079
9 init d = 2
10 initb =0 - — - —
11 init ¢ — 0 Vi Algorithm 2 Distributed power aIIocatlon for minimization of the
NG power subject to a common rate constraint
12 while| 3 ¢ = P| > € _ 1init P = 109 vj
13 Calculatep according to the roots of (18) 2 init ¢; = 2 Vj
. Ne 3initpj=0Vj
14 it2, ¢i=P<0 4 init Ry, = 0 Vt, j
15 b=b+1 5 while |Ro; (¢°P%) — R°™| > € Vj
16 A=X/d 6 for iteration=1 to 20
17 d=d—1/2" 7 forj=1to N
18 end if 8 for all steps
19 A=Axd 9 init w;; vt according to step
20 end while 10 init A =109
21 If condition satisfied orRo; (¢°P?) V¢ exit step loop 11 initd =2
22 end for B 12 initb =0
23 if Ro(¢°Pt) — R°™ >0 13 init ¢;; = 0 Vi
24 p=p+1 . Ne
25 P =Pe 14 wh|Ie|_Zl¢ij—Pj|>e
26 c=c—1/2? 15 Calczu_lateqs_ according to the roots of (18)
27 end if N
28 P=Pxc 16 it > ¢ij — P <0
29 end while 17 bi::1b+ 1
18 A=)\/d
19 d=d—1/2°
20 end if
21 A=Axd
22 end while
23 If condition satisfied orRg;; (?‘J?Pi) vt exit step loop
24 end for
25 end for
26 end for

27 forj=1to N
28 if Roj (Q‘;Pi) — Re™ >0

29 p; =p;+1

30 P]' = P]'/C]'

31 CjZCj71/2pJ'
32 end if

33 Pj = Pj X ¢4

34 end for

35 end while




