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Abstract— procedure searches the optimal power allocation itergtive
Recently, the duality between Multiple Input Multiple Outp  over the users using the standard waterfilling formulas over
(MIMO) Multiple Access Channels (MAC) and MIMO Broadcast frequencies.

Channels (BC) has been established under a total power craist. H findi th timal t it ¢ .

The same set of rates for MAC can be achieved in BC exploiting ‘?W€V3r' inding the opumal transmit vector covariance

the MAC-BC duality formulas while preserving the total powe Matrices for the MIMO Broadcast Channels (BC) has been
constraint. In this paper, we describe the BC optimal powdloa an open problem for a while. Indeed, contrary to the Single
cation applying this duality in a downstream x-Digital Subsber  |nput Single Output (SISO) BC where the channel is degraded
Lines (xDSL) context under a total power constraint for all adlems (i.e each signal is a linear combination of the other signals

over all tones. Then, a new algorithm called BC-Optimal Spreen . . .
Balancing (BC-OSB) is devised for a more realistic poweradhtion and an additional noise), the MIMO BC is non-degraded

under per-modem total power constraints. The capacity egiof Which makes the capacity regions much more difficult to
the primal BC problem under per-modem total power constrwin characterize. In fact, the SISO BC capacity region can be

is found by the dual optimization problem for the BC under per achieved by superposition coding at the transmit side and
modem total power constraints which can be rewritten as a Huag,-cessive decoding at the receive side where the ordering

optimization problem in the MAC by means of a precoder -mamxbetween users is determined by the noise variance [5]. Re-
based on the Lagrange multipliers. We show that the dualitgpg y :

between the two problems is zero. The multi-user power atam  Cently, a new technique called Dirty Paper Coding (DPC) has
problem has been solved for interference channels and MAGngs been introduced [6], [7]. It can be shown that DPC achieve
the OSB algorithm. In this paper we solve the problem of mullti the capacity region for SISO and MIMO BC. Moreover, an
user power allocation for the BC case using the OSB algor'thmimportant result has been established in the form of a dualit

as well and we derive a computational efficient algorithm thaill
be referred to as BC-OSB. Simulation results are provided fotheory between the MAC and BC, where the MIMO BC

two VDSL2 scenarios: the first one with Differential-Mode (@) Capacity regions can be characterized by their dual MIMO
transmission only and the second one with both DM and Phantom MAC capacity regions [8]. With this duality between the MAC
Mode (PM) transmissions. and BC, it is found that the same set of rates can be obtained
in both domains under the same total power constraint.

However, in a multi-user scenario, and especially in xDSL,
a constraint on the total power used by each individual

In 1996, Foschini and Telatar have shown that the capaciodem is more realistic than a total power constraint for all
of Multiple Input Multiple Output (MIMO) systems increasesmodems together. In a recent paper, per-modem total power
linearly with the minimum number of transmitters and reconstraints have been applied to MIMO MAC-BC duality
ceivers [2], [3]. In multi-carrier systems with Channel ®ta theory in a wireless context [9]. It has been shown that
Information (CSI) at the transmit and receive sides, théwgit MIMO MAC-BC duality still holds if an unknown covariance
capacity is reached using standard waterfilling [3]. In t#ise, matrix is included in the MIMO MAC optimization function.
the precoding and equalization are given by unitary madricghe capacity regions are found by means of a maximization
calculated from the Singular Value Decomposition (SVD) @dn the input covariance matrices and a minimization on the
the MIMO channel for each subcarrier. In [4], this workynknown covariance matrix, requiring complex algorithms i
has been extended to the multi-user case, where the optiler to find the optimal solution when applied to the multi-
transmit vector covariance matrices for the MIMO MAGone transmission.
are found by a procedure called iterative waterfilling. This |n this paper we devise a new algorithm called BC-OSB

V. Le Nir and M. Moonen are with the SISTA/ESAT labora- requmr_1g less complexity compared to [9] for optl_mal bower
tory, Katholieke Unviversiteit Leuven, Leuven, Belgium.-ntail: vin- allocation under per-modem total power constraints for the
cent.lenir@esat.kuleuven.be marc.moonen@esat.kulcheve multi-tone case (XDSL context). Our paper extends the work

J. Verlinden and M. Guenach are respectively with Alcatetént and of [8] in practical scenarios where we have per-modem total
Alcatel-Lucent Bell Labs, Antwerpen, Belgium. . .

This research work was carried out in the frame of the FWOgatoDesign power constraints for the BC. Indeed, it is known from [8]
and evaluation of DSL systems with common mode signal epion’ that per-modem total power constraints are not preserved by
and the IWT project 060207: 'SOPHIA, Stabilization and @ptiation of  the MAC-BC transformations. If a single total power budgget i
the Physical layer to Improve Applications’. The scientifesponsibility |sd used as in [8], then the power budget on each modem could be

assumed by its authors. A preliminary version of this pagexlieen presente h
at EUSIPCO-07 [1]. exceeded. Therefore we design a precoder for the BC based on
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i of q;; is the contribution of thej™ user at thei" tone on

yﬂ Uit w; the I line. The second order moment of these data vectors

x nin duality : MAC é v, are defined a%[q,;q/1] = Q,;. The covariance matrix of the
U ? h— : % N

yin  uin —{hlL transmitted data vectaE[x;x’] = > Q; since the vectors

2 ]:1

q;; are i.i.d. The dual MIMO Multiple Access Channel (MAC)

for the dual uplink scenario with N users (see also Fig. 1) can
be written as:

BC

Fig. 1. BC (left side) and its dual MAC (right side) for torie

Lagrange multipliers in order to transform these per-modem Vi = H'w;, +w; where H = [ hff ... hf} |
total power constraints into a virtual total power congitand (2)
finally use MAC-BC transformations. This precoder rescalééherew; = [u; ... u;n]" is the transmitted vector on tone
the channel matrix in order to meet per-modem total powér Vi iS the received signal vector of length, and w; is
constraints in the BC. The capacity region of the primal Bthe vector containing colored noise. In this paper, we agsum
problem under per-modem total power constraints is found H§inin;’] = I (this is without loss of generality, as correlation
the dual optimization problem for the BC under per-modeff} n; cannot be exploited anyway), so that in the dual MAC
total power constraints which can be rewritten as a dugihannelE[w;w;’] = I (in the MAC, a whitening operation
Optimization pr0b|em in the MAC by means of a precod&an always be applled to the received vector such that the
matrix based on the Lagrange multipliers. We show that tfise is white). The primal problem of finding optimal transm
duality gap between the two problems is zero. vector covariance matrices in the BC under a total power
The paper is organized as follows. In section II, we firgtonstraintP** is defined here as:
introduce the BC optimal power allocation applying this

duality in a downstream x-Digital Subscriber Lines (xDSL) (Qij)izp?vx - NCBC

context under a total power constraint for all modems over NN

all tones. Then, a new algorithm called BC-OSB is devised subject to) Y Trace(Q;;) < P 3)
in section Il for a more realistic power allocation under-pe g=1i=1

modem total power constraints. Simulation results arergive Qij = 0,i=1...Neyj=1...N

in section IV for a VDSL2 scenario with DiﬁerentiaI-Modewherech is the weighted rate sum function for MIMO BC

(DM) transmission and a VD_SL? scenario with both DM a”@mploying DPC (as DPC achieve the MIMO BC capacity
Phantom-Mode (PM) transmission. region [8]) for a given encoding order 1,...,N-1,N (i.e. use

1 is encoded first):
Il. BC POWER ALLOCATION UNDER A TOTAL POWER

CONSTRAINT

N N
In this section, we describe a procedure for computing CPe = Z%Zlogz [1+hi;Qijhija;'] (4)
optimal transmit vector covariance matrices in the BC using j=t =t
MAC-BC duality under a total power constraint, that is under N
a single total power constraint for all tones and all modenvéherea;; = 1+h;;( > Qu)h/i. Thew;’s are the weights

. . . [t
in the MIMO system. This provides a reference for tmEtssigned to the different users. In the MAC, the optimal

derivations in section Ill. detection order is actually defined by the weights and the use

We assume that all modems are synchronized and Y5, the |argest weight is decoded last [10], [11]. Assuming
Discrete Multi-Tone (DMT) modulation with a cyclic prefix decreasing order of weights, > - -- > wy, as the MAC-

Ionge_zr than the maximum delay spread of thg channel. V&%: duality dictates a reverse of the decoding/encodingrorde
consider a MIMO Broadcast Channel (BC) serving N USers |§ 1,0 BC the user with the largest weight has indeed to be
axDSL down;tre_am scenario as shown on the left side of Fig, e firs. Thus, the first term of the sum represents the ra
1. The transmission on one tone can then be modelled 8S:of user 1, which is encoded under the crosstalk of the other
h; users. The last term of the sum represents the rate of user
yi=Hx; +n, H; = : i=1...N, (1) N after having removed the crosstalk from the other users.
h,-.N The weighted rate sum function is neither convex nor concave
’ [8], therefore finding the optimal transmit vector covadan
where N, is the number of subcarriers,; andy; are respec- matrices in the BC is a difficult task. Fortunately, the diyali
tively the transmitted data vector and the received sigaator between the MAC and the BC states that it is possible to
of size N x 1, H; the N x N MIMO channel matrix anch; achieve the same set of rates in both domains under the same

the vector containing colored noise. The transmitted weisto total power constraint. As the optimal power allocationtie t
N . . .
composed byV vectors of sizeV x 1 such thatc; = 3 q;. MAC is tractable, one can calculate optimal transmit vector

=1 covariance matrices in the MAC and transform these into
q;; is the vector of thej" user data where thé" element optimal transmit vector covariance matrices in the BC. The



primal problem of finding power allocations in the MAC undematrices found in the MAC domain into optimal transmit

a total power constrainP°t is: vector covariance matrices in the BC domain as follows:
max CMAC
(q’i)izl...N(:Nl forj=Nto 1
subject 03" Trace ®,) < ptot ®) N
J z; ( ) - o Ajj = 1 +hij( Z sz)hi] (a,-N = 1)
®, -0,i=1...N, | k=it

j—1
— H —
with ®; = E[lwull] = diag(¢i,...,¢in) the covariance *® Bij _I+1;1 hjidihie (Ba =1)
matrix of transmitted symbols for tone The weighted rate o B-i-l/_ZF-‘GH 12, /2 pHR-1/2
sum function in the MAC for the decoding order N,N-1,...,1 Qi i FigGig iy dija GiFi B
(i.e. user 1 is decoded last) with Successive Interferenc
Cancellation (SIC) is:

eend for

with F;;, G;; the two unitary matrices coming from the SVD

NN B;'*hfa;'? = F;;L;;GE andL;; the diagonal matrix of
CMAC = N™ S logs [det (T+ hH ¢, h; B! g) Singular values for usej over tonei. Note that the above
; ’ ; 92 [det ( 10l B ] ©® procedure requires that the same total transmit power id use

- for the power allocation in the MAC and for the transmit veccto
e - T

whereB;; = I+ 3 hfi@khik- Problem (5)-(6) has been covariance matrices in the BC [8].
k=1

addressed in [10], [11]. The MAC-OSB algorithm has be€Rigorithm 1 Total power constraint

derived based on a dual decomposition approach Withl‘i‘nit N =1
Lagrange formulation. First, the dual objective functidr{%)-

. 2init step =2
(6) is: 3init b = 0
4init (®;);=1.n, =0
Nec
FMAC0N) = max  LMACN (@)icin) (7)) s while | " Trace(®;) — P! > €
(®i)i=1...Nc = ?
with \ the Lagrange multiplier and 6 Exhaustive searc?@ |, max LMAC(X, (®4)i=1..N.,)
i)i=1...N¢
Nec
N. 7 if > Trace(®;)— P <0
LMAC (), (®i)i=1..N,) = CMAC 1 \(pPtet — > Trace(®;)) i=1
’ = 8 b=b+1
@) o9 A= \/step
The dual optimization problem is: 10 step = step — 1/2°
minimize FMAC(>\) 11 end if
A 9 12 A = X step
subjectto A >0 13 end while

By tuning the Lagrange multiplier, the total power consttai 14 MAC-BC Duality
can be enforced. Because the dual objective function is casfor j=Nto 1Vi=1... N,
cave with a convex constraint set, it has a uniqgue minimu N
d aij =1+hi;( 3 Qir)h]

As the duality gap is zero [8], [11], this minimum correspend k=1

to the global optimum of the primal problem in (5)-(6). The izl

search for the optimal involves evaluations of the dual 17 Bij = I+k§1 hji gixhig

objective function (7), i.e. maximizations of the Lagraagi 18 Qi = B;jl/QFUGga;ﬂ@ja}J/QGUFgB;/Q

which, however, is decoupled over the tones for a gi¥eim

particular, the Lagrangian can be rewritten as: 19 end for

N, [ N
LMACN (®:)i=1..n.) = > < > wjl092|:
i=1 \ j

j=1 A complete algorithm description is given Egorithm 1.

. ) ot (10) We definee as the tolerance between the actuel total power
det (I+ hi5¢;;h;; B } — XMT'race(®;) | + AP . Ne .
( 3 0ibisBi; ) (®:) constraint)_ Trace(®;) and the target total power constraint
=1
Therefore the maximization of the Lagrangian can be dod&°’. As the duality preserves the total power constraint, the
by an exhaustive/iterative search on a per-tone basis [L0]tansmit vector covariance matrices in the MAC (i®;) or
by convex programming techniques such as interior poitite transmit vector covariance matrices in the BC ()
methods [11]. For further details, we refer to [10], [11]can be used for convergence in the loop (line Algorithm

Then, we can use the formulas from MAC-BC duality theory can be replaced by% ﬁ": Trace(Qi;) — P! > ¢). This
given in [8] to convert the optimal transmit vector covaidan i=1 =1 Y '



algorithm leads to the same rates for the different userhén t with
BC (4) and in the MAC (6) domain. N. N
LBC(A, (Qij)im1..N. j=1..N) = '21 ( 4zlelog2{
1= 7=
[1l. BC POWER ALLOCATION UNDER PERMODEM TOTAL H -1 ol
POWER CONSTRAINTS L hi Quhisas; } - ];1 Tmce(AQij))
+Trace (Adiag(P{°, ..., PioY))

In the xDSL context, it is more relevant to consider a (14)
constraint on the transmit power of each modem separatgith L the number of modems used in the downstre@ncgn
instead of a constraint on the power for all modems togethee larger or equal than the number of active uﬁﬂ, andA
Therefore, the goal of this section is to find optimal trartsma diagonal matrix of Lagrange multiplietsag(\1, ..., \L).
vector covariance matrices in the BC under per-modem totehe dual optimization problem is:
power constraints, that is under a total power constraint fo

each modem over all tones. The primal problem is defined as: minimize  FP¢(A) (15)
subjectto N\ >0 VI

max B¢ First we will solve the dual problem (15). Then we will
(Qw'%:lec-jvJ;:lﬁN show zero duality gap between the primal and the dual
subject to3 Z Qi < Pt Vi (11) problems in (11) and (15) respectively. Rescaling the chhnn
j=1i=1 matrices by the inverse square root of the Lagrange muétipli
Qi; =0,i=1...N,,j=1...N matrix leads to:
with P/°t the power budget for moderh and Q;;; the I'" H; x'i
diagonal element of the transmit vector covariance matix f yi = H;A™Y2 AY?x; +n;. (16)
userj over tonei coming from the/ diagonal element of the
covariance matrix of the transmitted data Vecm]xixfl]” — For this equivalent channel and a glVAl';I the dual Objective
N ) ) function in the BC becomes:
>~ Qiju. Each diagonal elemen®;;;; contributes to the
j=1
per—modem total power constrair@?¢ is_the weighted rate pBC(AY — max LA, (Q'4j)imt.. Nosj=1...N)
sum function as defined by (4). We aim to follow a dual (Q'3;)i=1...N¢,j=1...N
decomposition approach similar to the approach in section | 17)
and again exploit MAC-BC duality theory. The primal problem With
of finding optimal power allocations in the MAC under a per- Be , N N
modem total power constrait!*" is: LEE(A(Qjj)i=1..Noj=1..N) = 2:1 J;lelofh{
MAC 1.0y o H -1 X ’
max C (1+h”Qijhijaij )} - ZT?“ace(Q ij)
(®i)i=1...N¢ j=1
subject to% bij < P{otVj (12) +Trace (diag(PliOt, e P’tLOt))
i=1
®,~0,i=1...N, N . (18)
where a’;; = 1+ h';( 30 Q'y)h’y; with the rescaled
with ®;, = E[uzufl] = dz‘ag(gbﬂ,...,qﬁm) the transmit A

i trix for tone i an@™AC the weighted rat channel vectordy’;; = h;;A~1/2 and the re-defined trans-
covariance matrix for tone i a e weighted rate SUM it e cror covariance matrice®’;; = A/2Q;;AV2. The

defined by (6). However, the MAC optimal power aII.ocat|o arget per-modem total power constraints are also re-cgfine
computed from (12) cannot be converted directly into B s diag(P''"" Pty — AV2djag(Plet PlotyAL/2
optimal transmit vector covariance matrices for (11) bseauq o <an sleé that (1L8) corresponds tol (1’0) \;mé: L and
the MAC-BC duality does not preserve per-modem total POWEE o e precoder matrix —!/2 transforms the per—r,nodem
constraints. Tq by_pass th's. problem we apply a tranSfo_Dnat'total power constraints into a virtual total power congitdiy

to the dual objective function of (11) leading to an equinale

S . . . hiding the Lagrange multipliers into the equivalent chdane
objective function with a total power constraint, and thee w, 9 grang P q

. . . . X h';; and the new covariance matric&, .. We can now invoke
= . Z] . . .
exploq MAC-BC duality. Th|§ transforr_nanon cons[sts_of AC-BC duality theory to transform the dual optimization
rescaling of the channel matrices by a virtual precodingixat

. . . . roblem in the BC into a dual optimization problem in the
operation. The BC dual objective function corresponding AC for a given A under the same virtual total power

(1D)is: constraint. The MAC-BC duality theory states that the suta ra
capacity of the MIMO BC equals the sum rate capacity of the
FBC(A) = max LBC(A,(Qij)i=1..N.j=1..N) For example other lines that are not dedicated to specificsuge that

(Qij)i=1...N¢,j=1...N are not active) are used to boost the rate of the active usmmgh crosstalk
(13) coupling.



MIMO MAC with preservation of the total power constraintmatrix. We can write the equivalent primal problem in the BC
ThereforeFEC(A) in (13) is identical toFM4C(A) in (22) as:
resulting from the following equality concerning the suntera

capacity: i
pacty i x5 o 55l (1o vi,)|
BC subject toZ Trace(®;) < Pt
SR , g ® = 0i-1. N.
Z“’ﬂ Zl‘)g?{(”hw%h )] - (24)
) = =1
N N, (19) whereYx ;; = X + Z hzkgbzkh%k, X is an uncertain noise

1H ’ =1
wj logs {det (I + B3¢ B ) } diagonal matrix ancPt"t is the sum of the per-modem total

power constraints in the BC. As the primal and the dual
MAC optimization problems of MAC under a total power constraint
lead to the same capacity region (the duality gap is zerasinc

whereB';; = I+ Z h'j; ¢, 0. The preservation of the the problem has a concave objective function under a convex

| \
—

total power constralnt leads to the following equality : constraint set), for a giveiX the dual formulation under a
total power constraint:
Z Z Trace(Q Z Trace(® (20) . Ne N " _
i=1j=1 i=1 @ igl j§1 wilogz [dd (I +hijoihi Yx U) }
Based on the two equalities (19) and (20), the BC dual N, ror
optimization problem in (15) can be rewritten as: *AZI Trace(®;) | + AP
minimize FMAC(A) o _ - (25)
: (21) Now, taking into account the previous definitions of the new
subjectto A\ >0 Vi ) . :
covariance matrices®; = ®; and new total power constraint
with APtot = prtot e get:
FMAC(A) = max LMAC(A,(®3)iz1.v,)  (22) N. [ N
(®'i)i=1...Nc min o.max S ( 3 wjloga [det (I+ +hi ¢ h; Yy fJ”
and where£MAC is the same a£Z¢ in (18) except that N( DN i=1\j=1
we take into account (19) and (20) such that _ Z Trace(®?) | + P*tot
MAC i il = 26
LUACA, (@ imrv) = (X wilogs | - (26)
AT with Y ;; = X + & > h/f¢7, hi. The interference can be
det (I + h’Hd)’Z] h';; B’ 1) ] — TT(LC(i(q)/i))) (23) rewritten as: =
+Trace (diag(P’tl‘)t, . ,P’tLOt)) Yk, = X1+ 5 Z X~Y2nH ¢ hy X 1/2)X1/2
Therefore, for a givem\, we can then compute the optimal (27)

power allocation in the MAC by (22) and use the duality forsing the following equalitydet(I + AB) = det(I + BA),
mulas of [8] to obtain the optimal transmit vector covariancthis leads to the following optimization problem:
matrices in (13). The Lagrange multipliers are then adpiste N, N

so that the per-modem total power constraints are enforced  min max Y. < > wleQQ{

using (15). XA(®})i=1.Nei=1 \j=1
Up to here we found the optimal solution of the dual det (1 +AX-120H gy XU2BY le)} (28)
problem (15) by means of (21). In the following we will N,
demonstrate that the duality gap between (11) and (15) & zer — 3 Trace(®*) | + P*tot
Towards this end, we introduce the following theorem: i=1

Theorem: The primal optimization problem in the BC under
per-modem total power constraints (11) is identical to thald it Bg, =1+1 Z X~12pf g5 hy, X—1/2. When the
optimization problem in the BC under per-modem total power
constraints (15). Hereby duality gap between (11) and (45)4yncertain noise is selected such thatX~'/? = A~/? and
zero. knowing thath’;; = h;;A~'/2, one can easily show that
Proof: It is known from [9] that the capacity region of By ;. = B';; with &* = ®’. Hence (28) will be exactly the
a BC under per-antenna power constraints for a multi-tosame optimization problem as (21). Knowing that the (28),
transmission is identical to the capacity region of a MAG21) and (15) optimization problems are the same, the qualit
under a total power constraint with an uncertain noise diatjo gap between (24) and (28) is zero, and (24) has the same



capacity region as (11), we can conclude that the duality
between (11) and (15) is zero. This completes the proof.

A complete algorithm description is given @dgorithm
2. We define¢; as the tolerance between the actuel pe
N, N
modem total power constrain} [A~'/2(> Q';;) A2,
i=1 j=1
and the target per-modem total power constrdifit’ for the

™ modem. This algorithm will be referred to as BC-OSB

(BC-Optimal Spectrum Balancing):

_RUR2(Mbps) | w1=0.0 | w;=0.1 w1=0.2
“TUser 1 first | 0/89.96 | 136.0/89.53| 136.0/89.53
User 2 first | 0/89.96 | 136.0/89.53| 136.0/89.53
w1=0.3 w1=0.4 w1=0.5 w1=0.6
136.0/89.53| 136.0/89.53| 136.0/89.53| 136.0/89.53
136.0/89.53| 136.0/89.53| 136.0/89.53| 136.0/89.53
r- w1=0.7 w1=0.8 w1=0.9 w1=1.0
136.0/89.53| 136.0/89.53| 136.0/89.53| 136.2/0
136.0/89.53| 136.0/89.53| 136.0/89.53| 136.2/0
TABLE I

RATES UNDER PERMODEM TOTAL POWER CONSTRAINT IN THEBC.

Algorithm 2 BC-OSB under per-modem total power con 100
straints
1fori=1...L S e |
2 init \; =1 80r 8
3 init step; = 2
4 inith =0 "
5 init (Q';;)i=1..N, j=1.8N =0 & 60r 1
6 end for &
; & —1/2 SR —1/2 tot 2 50 |
7 while 3] S.t.| ZI[A (ZIQZ])A ]ll 7‘Pl | > € E 40
1= Jj= r 1
8 Exhaustive search : max LMAC (A, (®')i=1..N.)
P’;)i=1...N. 30+ N
9 MAC-BC Duality
10 forj=Nto1Vi=1. -J'VNC S [ ———" power constraint |
H L === — i |
11 agj =1+ h’ij( > Qlik)h/ij 10 Per-modem constraints|
k=j+1 0 . .
j—1
H 0 50 100 150
12 By =1+ k; h'idh ik R1 (Mbps)
—1/2 H /2 1/2 Hyyy—1/2
13 Q/ij — B/ij / F/ijG/z‘j agj/ gja;j/ G/ijF/i_j B/ij /
14 end for
_ Fig. 2. Rate region of BC-OSB in a VDSL2 system under a totalgyo
15 fori=1...L . :
_Ne N constraint and per-modem total power constraints.
16 if _X:I[A_I/Q( Zl Q')A 2]y — Pt <0
1= Jj=
17 by=0b+1
18 Al = A/ step IV. RESULTS
19 stepy = stepy — 1/2" In this section, we provide simulation results for two dif-
20 end if ferent VDSL2 downlink scenarios. We use measured channels
21 AL = Ap * stepy from a France Telecom binder. In the first scenario, 2 users re
22 end for spectively at 400 and 800 meters from the Central Office (CO)
23 end while or the Remote Terminal (RT) are served with Differential-
Mode (DM) lines (%2 channel matrix). In the second sce-
nario, 2 users both at 400 meters from the CO/RT are served
with Differential-Mode (DM) lines and their Phantom-mode
R1/R2 (Mbps) [ w1=0.0 w1=0.1 w1=0.2 (PM) line (differential between the 2 common modes) giving a
Hse: ; ;!:5: 8;22-33 gg-g;gj-gg g;ggggg 2x3 channel matrix. In this scenario, external noise is coming
serc s : — — from 2 other DM lines. The spectral masks for VDSL2 Fiber-
131111153-2353 13121;/2-1441 13121;/%537 1313197(8)?18 To-The-exchange (FTTex) are applied [12], with SNR gap
131.6/02.53] 133.7/01.41| 136.2/89.37| 137.9/87.18 I'=0 dB (since MAC-BC duality does not hold it >0 dBE
an AWGN of -140 dBm/Hz and a maximum transmit power
w1=0.7 w1=0.8 w1=0.9 w1=1.0 tot — i i
139 T/85 05 140 2780 801 TAL5 444 1454 P;?'=14.5 dBm per line. The frequency range is from 0 to
139.1/85.05| 140.4/80.80| 141.5/74.44| 142.4/0 . _ _
TABLE | 2The more general case with >0 dB will be addressed in a future

RATES UNDER TOTAL POWER CONSTRAINT IN THEBC.

report. The transmit covariance matriceQ;;);—1...n,,j=1...n are optimal
transmit covariance matrices optimal for the DPC capadaityniula. Note that
from the implementation point of view, once the optimal aisace matrices
(Qij)i=1...N.,j=1...~ are determined, the transmitted data symbalscan
be constructed as follows:



the BC. The rates R1 and R2 of the two users are provided,

-60

—Qiu with the first line corresponding to user 1 encoded first and
Q,, the second line correspon_ding to user 2 encoded first. We can

—gol JENERT i 0 ’ -0 see that the larger the weight allocated to one user, thedarg
L= ST L1z Tuzl the rate allocated to this user. However, one can see that the

difference between the possible encoding orders is nédgigi
‘100»" (approximatelyl0—3 Mbps) due to the diagonal dominance of
the channel matrix.

For TABLE 2 per-modem total power constraini®* =
14.5 dBm are chosen. The table again shows the rates obtained

dBm/Hz

120 in the 2x2 BC. As in the total power constraint case, the
results show almost equal rates for any encoding order, due
~140 ‘ ‘ ‘ ‘ ‘ to the diagonal dominance of the channel matrix. Moreover,
0 2 4 6 8 10 12 even varying the weights do not affect the different rates of
Frequency (MHz)

the users (except for the extreme casgs0 andw;=1). In
fact, the resulting transmit covariance matrices do noedep
on the weights owing to the precoding matrix operation which
rescales the channel vectors in the same way for thesedtiffer
weights.

In Fig. 2, we plotted the rates of the two first tables. The
Diagonalizing Precoder (DP) of [13] achieves 135.8 Mbps
for the first user and 89.30 Mbps for the second user. We

can conclude that in this scenario, owing to the diagonal
-807 - ___0Q. =0 dominance of the channel matrix, the DP achieves most of
L= 212 221 the capacity. Fig. 3 and Fig. 4 show the two BC optimal
- P transmit vector covariance matricéQ; as the covariance
-100¢ - . matrix where the tone dependency was removed(sitsn )"
} entry is denoted); .., over all frequency tones under per-
modem total power constraints with andn referring to the
m™ row and then™ column of the matrixQ;; ..,. We can see
that the optimal transmit covariance matrices have an almos
flat power allocation in the direct channels and a much smalle
power allocation in the crosstalk channels, where the profil
follows the shape of the FEXT.

Fig. 3. Optimal BC covariance matrix for user 1 in a VDSL2 smém under
per-modem total power constraints.

-60

___'Q222

‘ QZJl

-

dBm/Hz

~120f 1
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Frequency (MHz)

12

Fig. 4. Optimal BC covariance matrix for user 2 in a VDSL2 smém under

Sum rate (Mbps)

SVD TPC [14]

SVD PMTPC [14]

2x2

461.46

461.46

2x3

488.64

469.97

per-modem total power constraints

BC-OSB PMTPC
449.01
458.94

TABLE Il
COMPARISON BETWEEN DIFFERENT SCHEMES

DP PMTPC [13]
448 47
449.01

12 MHz with 4.3125 kHz spacing between subcarriers and 4
kHz symbol rate. The FDD band plan of VDSL2 up to 12
MHz provides 2 frequency bands in the downlink scenario,
namely 138kHz-3.75MHz and 5.2MHz-8.5MHz. In the second
scenario, we transmit in the 0-30 MHz range with the FDD The second set of simulation results involves a VDSL2
band plan of VDSL2 up to 12 MHz and transmitting in thescenario with a 0 to 30 MHz bandwidth and exploiting 2 DM
all 12-30 MHz bandwidth with similar per-modem total powelines and their PM. In this case, the 2 DM lines are used
constraints. for downlink transmission with external noise coming from
For TABLE | a total power constrainP*** = 29 dBm for 2 VDSL2 DM lines of similar length, whose PSD’s are set
the 2 modems is chosen. The table shows the rates obtainedtin60 dBm/Hz. The PM is also used at the transmit side for
the 2«2 BC with different sets of weight@u;, we) = (w1,1— downlink transmission, providing an overall channel matf
wy). The two lines refer to two different encoding orders irsize 2<3. By duality, this corresponds to ax2 MAC case
where 2 users are transmitting in an uplink scenario and the
Ni)z\Tth?N nfaltr\i/fcitgr of theIl\‘/I-QAMsS;t]atﬁ;/gl[Jobij}ifj preéoded Esin&}he 2 DM lines and PM are used at the receive side. We use per-
from Chéjlesky déc.or.'r?;;ésition”(sag;j is a positieéjgé%i-deﬁrlljite ma:t]rixy mOdem t(,)tal power constraints Wlth, 14.5 dBm per modem. We
N transmit in the 0-30 MHz range with the FDD band plan of
2) Thenx; = VDSL2 up to 12 MHz and transmitting in the all 12-30 MHz
bandwidth with similar per-modem total power constraints.

> qi; will be sent on theN lines (thelth element ofx;
j=1
will be sent on the™ line).



TABLE 3 shows a comparison between existing algorithmgs]
[13], [14] for the 2x 2 case without exploiting the PM and the 2
x 3 case exploiting the PM. The weights aré = w2 = 0.5. 7
The algorithms SVD under a Total Power Constraint (TPC)
and SVD under Per-Modem Total Power Constraints (PMTPC[%]
provide the optimal rate sum with two-sided coordinatio#][1
Owing to the external noise, there is a rate loss between
the SVD schemes (with two-sided coordination) and the DF[’g]
PMTPC or the BC-OSB PMTPC (with only transmit side
coordination). The DP and the BC-OSB algorithms lead to the
same rates in the>22 case because none of these algorithni!
can properly mitigate the external noise (whitening operat
not possible at the receive side). However, in the32case, [11]
the BC-OSB shows a increased rate compared to the DP. This
is also due to the linear structure of the DP which make it
difficult to meet the per-modem total power constraints fqr2]
non-square matrices.

Simulation results were performed on xDSL systems, b[J1[3]
they can also apply to wireless systems. The two main
differences between xDSL systems and wireless systematis fh%]
the former exhibit diagonal dominance of the channel matrix
while the latter do not. Therefore, in XDSL systems, while
linear precoders can achieve most of the capacity, wireless
systems require more advanced processing algorithms (such
as the BC-OSB algorithm presented in this paper) in order
to achieve the maximum sum rate capacity. An extension of
this work is to investigate the BC-OSB algorithm in wireless
systems.

V. CONCLUSION

In this paper we have investigated the problem of optimal
power allocation in the MIMO BC in the context of down-
stream xDSL. We have first described an algorithm for power
allocation under a total power constraint, i.e a single ltota
power constraint for all modems over all tones. Then, a new
algorithm called BC-OSB algorithm has been devised for a
more realistic power allocation under per-modem total powe
constraints, i.e a total power constraint for each modenr ove
all tones, where the derivation is based on a dual problem
formulation and an adequate transformation by a precoding
matrix. Simulation results have been provided for diffeéren
scenarios, namely a VDSL2 scenario with DM transmission
and a VDSL2 scenario with DM and PM transmission.

REFERENCES

[1] V. L. Nir, M. Moonen, J. Verlinden, and M. Guenach, “Brazast chan-
nel optimum spectrum balancing (bc-osb) with per-moderal tpbwer
constraints for downstream dsl,” ib5th European Sgnal Processing
Conference (EUSIPCO’2007), September 4-8, 2007, Poznan, Poland,
September 2007.

[2] G.J. Foschini and M. J. Gans, “On limits of wireless conmications in
a fading environment when using multiple antenn&s 'eless Personal
Communications, vol. 6, no. 3, pp. 311-335, 1998.

[3] E. Telatar, “Capacity of multi-antenna gaussian chdsheEuropean
Trans. on Telecomm. ETT, vol. 10, no. 6, pp. 585-596, Nov. 1999.

[4] W. Yu, W. Rhee, S. Boyd, and J. Cioffi, “Iterative watetifi for gaus-
sian vector multiple-access channeldZEE transaction on Information
Theory, vol. 50, no. 1, pp. 145-152, Jan. 2004.

[5] T. Cover and J. Thomaglements of Information Theory. New York:
Wiley, 1991.

G. Caire and S. shamai, “On the achievable throughput ohuati-
antenna gaussian broadcast chann®&EE Transactions on Vehicular
Technology, vol. 49, pp. 1691-1706, July 2003.

1 H. Weingarten, Y. Steinberg, and S. Shamai, “The capa@gion of

the gaussian mimo broadcast channel,”"Ganference on Information
Sciences and Systems, 2004, pp. 7-12.

S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality,réevable rates,
and sum-rate capacity of gaussian mimo broadcast chahn&gE
Transactions on Information Theory, vol. 49, no. 10, pp. 2658—-2668,
October 2003.

W. Yu and T. Lan, “Transmitter optimization for the mutintenna
downlink with per-antenna power constraint$EE Transactions on
Sgnal Processing, vol. 55, no. 6, pp. 2646—2660, June 2007.

P. Tsiaflakis, J. Vangorp, J. Verlinden, and M. Moonévipttiple access
channel optimal spectrum balancing for upstream dsl| trésson,”
|IEEE Communication Letters, vol. 11, no. 4, pp. 398-400, Apr. 2007.
H. Boche and M. Wiczanowski, “Optimization-theoretanalysis of
stability-optimal transmission policy for multiple-antga multiple-
access channellEEE Transactions on Sgnal Processing, vol. 55, no. 6,
pp. 2688-2702, June 2007.

G.993.2, “Very high speed digital subscriber line teeaivers 2
(VDSL2),” ITU-T Recommendation, Feb. 2006.

R. Cendrillon, G. Ginis, E. V. den Bogaert, and M. MooneA
near-optimal linear crosstalk precoder for downstream!,YdEEEE
Transactions on Communications, vol. 55, no. 5, p. 860863, May 2007.
V. L. Nir, M. Moonen, and J. Verlinden, “Optimal poweratation under
per-modem total power and spectral mask constraints in xestor
channels with alien crosstalk,” ihEEE International Conference on
Acoustics, Speech, and Sgnal Processing, ICASSP’ 07, Honolulu, USA,
April 2007.



	Introduction
	BC power allocation under a total power constraint
	BC power allocation under per-modem total power constraints
	Results
	Conclusion
	References

