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Abstract— In order to increase the diversity order of a multi-
antenna system at a moderate cost of complexity, one may chsm
Orthogonal Space-Time Block Coding (OSTBC). In this paper,
OSTBC is combined with linear precoding matrices to improve
the space-time-frequency diversity. Different linear preoding
matrices based on either Fourier, Vandermonde or Hadamard
constructions are proposed where a simple linear de-preceaa can
be chosen at the receiver part which performs very close to &
Maximum Likelihood (ML) decoder. The system is generalized
to different numbers of transmit antennas and different sizs
of precoding matrices. It is shown that the combined scheme
efficiently exploits the space-time-frequency diversity ging a
linear decoder leading to an OSTBC with maximal diversity fa
more than two antennas when a Zero Forcing (ZF) or when an

of the OSTBC, i.e. 1 for the Alamouti code and 1/2 or 3/4
for Tarokh codes. In [15] and in this paper, we demonstrate
that the diversity of the system increases owing to linear
precoding applied in the time, frequency, or space domains
using several groups of transmit antennas alternatively. A
comparison between several linear precoding matricesdbase
on either Fourier, Vandermonde or Hadamard constructions
is provided. It is shown that this specific combination of
linear precoding and OSTBC results in an orthogonal system
providing full diversity.

First, the linear precoding matrices are described, i.e. th
Fourier, Vandermonde and complex Hadamard matrices, the
last one based on SU(2) construction. We demonstrate why
our system allows a simple linear de-precoder while other
NOSTBC based systems require ML-like decoders. Then, the
generalised scheme is presented, which can be adapted to var
ious MIMO configurations with different numbers of transmit

antennas. It is shown that because of the chosen matrices
used for the linear precoding, a non-centered gaussiarsitive
can be obtained for the detected symbols. This paper focuses
. INTRODUCTION on the maximization of diversity and the minimization of

Since the work of Foschini [1], there has been a hudeterference using linear precoding with a linear de-pditg
interest concerning Multiple Input Multiple Output (MIMO) at the receiver part while the systems proposed in the fiteza
systems. The main result of MIMO systems is that the capacitycus on the optimization of the minimal product distance of
varies linearly with the minimum ofV; transmit andN, the linear precoding at high Signal to Noise Ratio (SNR) gisin
receive antennas. Parallel to his work, Orthogonal Spaee ML-like decoder. Finally, simulation results are givem f
Time Block Coding (OSTBC) was demonstrated to be different sizes of precoding matrices confirming the thécaé
good trade-off between performance and complexity to éxplanalysis.
spatial diversity in multi-antenna systems. The initial TBE For this study, uncorrelated frequency non-selective
proposed by Alamouti [2] for 2 transmit antennas is mereRayleigh fading and time invariance durifig symbol dura-
decoded with a linear operation. Another advantage of thiens are assumed as well as perfect channel estimation at
Alamouti code is its rate equal to 1. Then, Tarokh [3] extehdehe receiver side. The channel corresponds to a quagi-stati
OSTBC to 3 or 4 transmit antennas with linear decoding #iat fading well adapted to Orthogonal Frequency Division
well, but resulting in lower 1/2 and 3/4-rate codes for anplultiplex OFDM-like modulations. Hence, the theoretical
complex constellation. Since, many studies were carrigd athannel response of the uncorrelated channels from tra&nsmi
to find space-time codes with more than two antennas and ratg) antenna to receiving antenna can be represented by
one, all resulting in Non-Orthogonal Space-Time Block Godé;, = p;.e*t.
(NOSTBC) [4, 5, 6, 7], thus requiring more complexity at the
receiver than linear decoders. Il. LINEAR PRECODING

In parallel, linear precoding was demonstrated to effityent In this section, the unitary linear precoding matrices de-
exploit time diversity for Single Input Single Output (SIFOscribed are the Fourier, the Vandermonde and the complex
systems [8, 9] as well as MIMO systems including OSTB&ladamard matrices for a sidex L. Then, the state of the art
[10]. In [11], a system combining the NOSTBC proposed ifor linear precoding without OSTBC is given, focusing on the
[4] with linear precoding is presented, but the complexitit® constellation transmitted for different sizes of precadima-
Maximum Likelihood (ML) decoder varies exponentially withtrices. Finally, it is shown that most of the schemes progose
the length of the precoding matrix. Linear precoding adéptén the literature are limited to small size precoding maisic
to space-time transmission in order to find new NOSTBC wagcause of the use of an ML-like decoder.
carried out in [12, 13, 14] but also using ML-like decoders.

In this paper, we generalize the scheme that we briefly Linear Precoding matrices
presented in [15] that consists of combining linear precod- 1y g rier matrices: The linear precoding matrix obtained

ing and OSTBC. We showed in [15] that the system usingi, Fourier Transform matrix construction is:
Hadamard linear precoding matrices based on the Speciaﬁ

Minimum Mean Square Error (MMSE) equalizer is chosen.

Unitary SU(2) group and a simple linear de-precoder offers 1 11 12 Ll—l
a good performance/complexity tradeoff and performs very e v O
FFT _ 1 w w w )

close to the ML decoder. The system conserves the initial rd®7" " =

-
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(5) C. Decoding

In [10, 12, 13, 14], an ML or spheric decoder is used in
belonging to the Special Unitary group SU(2), thereforerder to retrieve the linear precoded information in severa
det(®2) =1 andO©; ! = 4. space-time architectures because of the interferencesterm
Thus, with a ML-like decoder, the maximum sizes are up to
L = 32ina SISO environment [8] and up fo= 8 in a MIMO
B. State of the art environment [11]. However, in [9] the authors implemented
linear decoding based on the Minimum Square Error (MSE)
In [8, 9], the authors first used Vandermonde matrices gfterion with sizeL = 256 in a SISO environment. Similarly
linear precoding matrices for a SISO system in a Rayleigh [15], we demonstrated that linear decoding provides good
environment in order to increase the diversity of the globgkrformance in a MIMO environment using a specific linear
system. In [16], this operation is seen as constellatioraexp precoding and OSTBC. As shown in the sequel, the receiver
sion. They demonstrated that in order to exploit the ulténainay merely consist of the transconjugate of the initial pre-

shaping gain (1.53 dB), the constellation must be uniformboding matrix®” and a linear demapping according to the
distributed in a hypersphere. Indeed, the projection of ghosen constellation.

uniform probability distribution over an L-sphere onto aore
two dimensions is a non-uniform probability distributidmat I1l. L INEAR PRECODING ASSOCIATED WITHOSTBC

approaches a Gaussian density as L increases. When usinghe gpace-time architecture applied to the precoded symbol
Quadrature Amplitude Modulation (QAM) symbols equiprobys an OSTBC scheme. Therefore, the transmission chain is
ably distributed, the result of the projection over a sphefgear pecause the receiver has a linear decoding comyplexit
of dimension L is a 2-D gaussian density when L is largg, the following sections, an OSTBC description based on

This effect can be seen on Figures 1 (d) representing ¢ nnel representation and the STBC state of the art is given
3-D gaussian density of linearly precoded Quadrature Phaggan the linear precoding with OSTBC is explained.
Shift Keying (QPSK) symbols by a complex Hadamard matrix

based on SU(2) group of siz@ = 256, v_vhich he_ls the same A. OSTBC representation
shape as Vandermonde matrix or Fourier matrix for 256. . . )
Figure 1 (a) respresents linear precoded QPSK symbols with! N€ rate2 of OSTBC is defined as the ratio between the
a complex Hadamard matrix based on SU(2) group of sifimber of transmit symbol&V and the number of symbol
L = 4. It can be demonstrated that Fourier matrices obtafit/rationsT’ necessary for their transmission. _

the same number of constellation points as complex HadamardVith the 1-rate Alamouti code [2] folV; = 2 transmit and
matrices based on SU(2) group. On Figures 1 (b)(c), twyr = 1 receive antennas can be represented as follows:
Vandermonde matrices of sizé = 4 and 256 are used to { s1 —sh ] ©)

linearly precode QPSK symbols. 9= 1 s



Under the assumption that the fading coefficients are cohst8. State of the art
over two consecutive symbol durations, the code is repteden as Tarokh demonstrated that no orthogonal design exists
by: for 4 transmit antennas, 4 diversity order and rate 1 [3],
r=Hs+n (7)  the research focused on NOSTBC. These codes can also be
expressed by (7) where = [r; r2 r3 74]7 is the received
. T . ) @lgnal ands = [s; so s3 s4]7 the transmitted one. The total
symbol durTat_lonss N [3.1.32] |s_the trans_mltted_5|gnal, transmit power iP. Each antenna transmits a symbol over one
n = [n1no]" is the Additive White Gaussian Noise (AWGN).symbol duration, therefore each antenna transmits syntols
hi  he a power of P/4. The matrix representation described in IlI-
H = [ —h} b ] ( A can be extended to these NOSTBC schemes [4, 5, 6, 7].
For the NOSTBC proposed in [4] and [5] by Jafarkhani and

is the equivalent channel matrix for the 2 successive symbgtkkonnen respectivelyH is therefore a 4x4 matrix equal to:
durations over 2 antennas, algis the channel response of the

transmit antennad. The length of the channel representation | = [ Hi Hf ] andH = { H, H, } (15)
given by the number of rows o is L. = 2. The decod- —H; Hj H; H,

ing step consists of applying the transpose conjugate of tiwth H; the equivalent channel matrix for 2 successive symbol
channel matrix to the equivalent received vector. The diegpd durations over 2 antennas corresponding to (8). In the chse o

wherer = [r;5]7 is the received signal over two consecutiv

leads to: the NOSTBC proposed in [4]A of formula (9) becomes a
S§=As+n (9) non-orthogonal matrix of the form:

where § = [5; §]7 is the estimated symbol vector after a 0 0 b

decoding,A = H?.H = \.I, where(.)¥ stands for the A_Hfg-|0 @ b0 (16)

transconjugatel, the identity 2x2 matrix\ = |h1|? + |h2|? 0 b a 0

andn’ = H .n b 0 0 a

This matrix representatlon can be extended to other OSTBC )
such as the Tarokh codes [3]. FG§, G4, Hs and H, the Wherea = Z |hi|* andb = 2Re(h1h} — hoh3). This scheme

channel representatiodd respectively are: needs an ML-like detector because of the intrinsic interiee.
_ . . . T In [10], the authors propose to apply a linear precoding to
hi —ha —hs 0 hi _hg —h; 9 a non-orthogonal matrix [4] and to use a ML decoder at the

Hg, = ha  h 0 —hg hy Ny 0 —h3 receiver part. The implementation complexity of theseesyst

5=l hs 0 hy hy hX 0 h' R}

increases exponentially with the size of the precoding imatr
0 hg —hg hi O hi —hd A

because they all require ML or similar decoders due to high

(10) interference terms.
hi —hy —hs —hg h:1: *h’é *hé *hzl ’ C. The new proposed scheme
Hg, = ZQ _Zl 24 723 Zi _Zi ij 723 In the 4-transmit antenna system that we proposed in [15],
h3 h4 —hl h2 hi hjf —hi hf the Alamouti OSTBC is chosen in order to keep the rate one
e S I A (11) for the new proposed scheme. The Alamouti OSTBC is applied
alternatively to antennas 1 and 2 and then to antennas 3 and
4. Thus, the symbols are transmitted over the first group of
hi 0 hy - ,%}Z hy ,%é 4 transmit antennas 1 and 2 with a powef2 over two symbol
Hy,= | hs 0 —h %, _%’; h_; h3 (12) durations when the other antennas are switched off. Then,
b b g 0 hithi o hiZh the oth_er symbols are transmitted over the second group of
V2 V2 V2 V2 transmit antennas 3 and 4. Therefore, as for the precedent
NOSTBC codes for 4 antennas, the total transmit power per
hy 0 hy hazhs _h;;hz ha s _hg;hj T symt_)ol duration isP. We obtain the following equivalent
Hy, = ho 0 —ht hggm 7h_.§42rhj )135114 h;;rhj matrix: H 0
hatha hs—ha 0 hithy 0 hi—h; H= |: 1 ] (17)
vz V2 V2 V2 (13) 0 H,

The length of these channel representatibpss equal to Of size 4x4. At the reception, in (9) we g&t = Ay =
8 for G; andG, and 7 forH; andH,. The OSTBC decoding H” H = diag(A1, A1, A2, X2) @and; = |ha; 1] +[hai|* with

gives the following result: 1 € N* leading to a 2 channel diversity order. So far, there is
no gain compared to the classical Alamouti scheme described
B 9 in [2].
A= Z'h” (14) Before being space-time coded, the symbols are prelim-

inarly linear precoded with & x L unitary matrix based
This X value applies to every OSTBC code. on Hadamard construction. This linear precoding will have



the effect of increasing the diversity order of the transedit the orthogonality of the resulting code. For instance, it
symbols. Using® a4 for I, = 4 and applying the coefficients Alamouti code, the channel matrix can represent the channel
n=7%,0=0—7%,01 = %’r , this leads to the SU(2) matrix: matrix in either time or frequency domains using 2 transmit
antennas. This channel matrix can also represent the channe
O, = 2| 145 -1+ (18) matrix in the space-time or space-frequency domain using 4,
8 or more transmit antennas if only two transmit antennas are
The global transmission and reception system is descriped bending symbols while the other transmit antennas remkin id
A — 0O A® (19) However, the total transmit power should remain a constant
4 4 -4 P. Therefore, each antenna of the first group\ofantennas
A+ A2 0 AL — Ao 0 will transmit at a power ofP/N; while the antennas of the
A= 1 0 A1+ A2 0 A1 — A2 (20) other groups are switched off. For the following block, the
first group will be switched off and each antenna of the

1[-1—j —1+4j

21 A1 — A 0 A1+ Ao 0
0 A1 — A2 0 A1+ A2 following group will transmit at a power oP/N;. Therefore,
this system can be adapted in order to exploit the spacegtime

The diagonal elements ok, are all equal to: X ) o
g N g frequency domains depending on the channel characteristic

L=4 . . )
ai =13 |2 Viell...4] 1) At the receptionA in (9) becomes:
=1 A:HH.H:diag(Al,...,Aj,...,AIV[/N) 24
Thus, owing to linear precoding, the exploited channel dive with A; = M\ Ix (24)

ity order INcreases from 2 to 4 Moreover, the mterferen%\eccordmg to the OSTBC chosen, the diagonal elements of the
terms are either null or equal to:

equivalent transmission/reception are:
2 4

ain = %(El |h|? — lz3 |h|?) i kel 4z (22) \ = % hip (25)
B - =1

As shown in [15] and detailed in the part IlI-D, a simple . . . N
linear decoding can be applied at the receiver part thnh j the time or spatial index of the decoded OSTBC block.

linear precoding is associated with an OSTBC scheme i e"fm mterk_eavmg and de m_te_r_leavmg_operatlon IS m@ddt_he
) : . .'s are mixed up and the initial matrix becomes an equivalent
the Alamouti code for several antenna configurations. In theé = .
N . ... matrix A (9) with:

sequel, the generalisation of the described scheme is gven

several OSTBC and linear precoding matrices. A =diag(A, A2,y N1, Ay A1, ) (26)

L Before being space-time coded, the symbols are prelim-

D. Generalisation of the proposed scheme inarly linear precoded with a unitary matri®, of size
In the proposed system OSTBC is applied by blockdbf [, x L. Whatever the unitary matrices based on Fourier,
symbols multiple of N according to the following equivalent Vandermonde or complex Hadamard precoding matrices, the

channel representatidd of size L.M/N x M: different eigenvalues; provided by the OSTBC process are
TH, 0 .. 0 .. 0 added, providing full diversity on the diagonal terms. On
the other hand, these matrices provide differences between
0 Hy . 0 ... 0 eigenvalues on the non diagonal terms.
0 e el el : The transconjugate of the channBEI” is equivalent to
H-= ' (23) an Maximum Ratio Combining (MRC) equalizer. The diag-
: Lo Hy 0 onal terms have a diversity that tend towards a non-centered
S gaussian law and interferences that tend towards a centered
0 ... 0 ' ' 0 gaussian law on the non-diagonal terms whemcreases in
Lo . 0 0 Hyyw | a flat Rayleigh fading channel environment. Therefore, when

with H; the j" equivalent channel representation of thesing an MRC equalizer with perfect channel estimation, the
OSTBC andL, the length of the channel representation of thglobal system is non-orthogonal.
OSTBC with N, antennas as defined in the part Ill-A. This With a ZF equalizer and an MMSE, thevalues become:

means thall; of size L. x N is independant from the previous Ny Ne o
or future blocks. These blocks can be applied either in the ti \— El il —1 )= El Al 27)
or in the frequency domain, requiring a channel constant ove %ﬁ 2 %ﬁ [hif242

i=1 i=1

T adjacent time symbols dF adjacent subcarriers. However,

these blocks can be applied in the space-time domain where~ is the Signal to Noise Ratio at the receive antenna.

space-frequency domain, that means that a multiple of theWhen using a ZF equalizer with perfect channel estimation,
N, transmit antennas (the total transmit antennas; with all the non diagonal terms are null. In order to avoid enhagci

1 < m < M/N antennas) can be used to send symballse noise, it is preferable to choose an MMSE equalizer,
over a first group ofN,; antennas while the other antennakading to very small interference terms and leading to a
are switched off. Ifm > 2, the following time or frequency global orthogonal system at high SNR. If we apply these
block will be sent on a different group of antennas, keepingnitary matrices to the diagonal matrix; corresponding to



the OSTBC coding and decoding process, the global lineaith

transmission/reception scheme is given by: a=A1+ A2+ A3 + A
b:)\l—)\3—j()\2—)\4) (35)
AL =0;'A,.0, =07 A0, (28) c=M—X4+A3—\

The linear de-precoding consists of applyi@g’, keeping the For Vandermonde and Fourier matrices, the diagonal terms
o . R follow a y2, law when an Alamouti MRC equalizer is chosen

global transmission chain linear. The rate of the initialfBE X1e 1oV . "~ €q :

is conserved. i.e. one for the Alamouti code in a flat Rayleigh fading channel environment. The interfer-

ence term noted follows a x2 law difference and follows
a x? law difference per dimension. If a ZF or an MMSE
equalizer is used, this leads to null or quasi-null interferes
respectively.

A general formulation of OSTBC combined with the spe-
cific linear precoding matrices such as the Vandermond®, Complex Hadamard matrices based on SU(2) group

Fourier and complex Hadamard matrices is described. The global transmission/reception scheme with the complex
Hadamard matrices based on SU(2) group is represented by:

IV. FORMULATION WITH DIFFERENT LINEAR PRECODING
MATRICES

A. Vandermonde Matrices and Fourier Transform Matrices

1 2 1 2
o . . A, = 2| BLpt AL ALp— AL, (36)
The global transmission/reception scheme with the Vander- L= Ai —_ A2 Al 1 A2
. . /2 L/2 L/2 L/2
monde matrices is:
Van~! Vv FFTH FFT with 1 Had? A1 Had
AL =0V Ap@Ye = @FFTY A, @F (29) A}, = @L72H.AL/2.®L72 @7
. . L. . A2 — @Had A2 .(_)Had
Owing to equation (2), the global transmission/receptiom f L/2 Ly2 L/2"=L/2
mula of the Vandermonde and Fourier matrices is similar but Al 0
the transmitted constellation is different as shown in the p AL = 8/2 A2 (38)
II-A. The global formula can be rewritten as follows: L/2
L where Al diag(\ o)
= arag A, ..., L/2
A== NI +J 30 2 39
- L; Lt (30) A%/Qdeg()\L/QH,...,)\L) (39)

with T, the identity matrix of sizel, x L and J the matrix in the case of interleaving. A®7/*¢ is a unitary matrix, all
of interference terms being differences between these As the diagonal elements ot in equation (30) are equal to:
Of'FT is a unitary matrix, all the diagonal elements Af; L/2-1

2
a;; are equal to: i =T Z cos? 1. \gy 11 +sin® n. Ay 2 Vi € [1... L] (40)
I 1=0
Gy = 1 Z)\l Viell... L) (31) while the interference terms are all difference betweesehe
L =1 A;'s. One of these interference terms is:
while the interference terms are all sum of differences betw ) . i (0140) L/2-1
these);’s. One of these interference terms is: @ik = — COST.8I17.€ l;) (A1 — Aaig2)
L/Q*l Z,k G [1L]Z7$k
air =17 > (=121 + jraise2) (32) - _ (41)
=0 ' In [15] and in this paper, we found that the optimal Bit Error
ik € [1... Llizy Rate (BER) performance results are obtained with pure real
The other terms of interference are also sum of differencgs PUre magmary_mterferenge, as for5|rr[15tance with 3?1@
between eigenvalues and may be complex interferences. WRAtx and coefficients; = 7, 61 = = and > = <.
a linear precoding matrix based on Fourier Transform matrb€se coefficients are fixed and do not depend on a channel
coefficients are optimal will be detailed at the end of this
11 1 1 chapter. Using®#d for I = 4 with the Alamouti scheme
QFFT :1 g -1 —=j (33) with interleaving the following diagonal channel matrix is
* 2|1 -1 1 -1 obtained:
L =5 -1 Ay = diag(M1, A2, A3, M\a) (42)
This leads to the following global hermitian circulant m&tr The resulting matrix is then:
a b ¢ b* a+b c+d a—b c—d
1 * 1| —c— — —
A=t b* a b ¢ (34) A=t c—d a+b —c+d a-b> (43)

4 c b a b 4 a—b c—d a+b c+d
b ¢ b* «a —c+d a—b —c—d a+b
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Fig. 2. Alamouti (Al.) associated without and with diffetdimear precoding Fig. 3. Alamouti (Al.) and Tarokh (G3x1, G4x1) associatedhout and with
matrices forn=2 bps/Hz compared to the AWGN channel linear precoding matrices faj=1 bps/Hz compared to the AWGN channel
with L = 4 the performance of the Vandermonde matrix and

(44) o = I is slighty better than the performance of the Fourier

a=M+X b=X3+ )\

c=A—h d=k—X matrix although these two matrices have the same global
As for Vandermonde and Fourier matrices, the diagonal terfpansmission/reception equations (34) and (35). Theeetbis
follow a x 74 law applying an Alamouti MRC equalizer in a flatimprovement is only due to the shaping gain of the transuhitte
Rayleigh fading channel environment. The interferencenger constellation forL = 4 as seen in Figure 1, because the
follow a x3 law difference. With perfect channel estimatiomumber of constellation points with a Vandermonde matrix
and a ZF equalizer, the interference terms are null as welljgshigher than the number of constellation points with a
with an MMSE equalizer at high SNR. Fourier matrix. One can see that fdr = 4 the system

Applying an Alamouti MRC equalizer in a flat Rayleighwith the complex Hadamard matrix outperforms the systems
fading channel environment with Vandermonde, Fourier jith Vandermonde or Fourier matrices. This can be explained
complex Hadamard linear precoding matrices of size L, by the complex interference terms (34)(35) for Vandermonde
the diagonal elements follow g3, law. However, the non- and Fourier matrices and pure real or imaginary interfezsnc
diagonal terms are different. Indeed, some of the intenfege (43)(44) for complex Hadamard matrices. However, when
terms of Fourier and Vandermonde matrices followx® using complex Hadamard matrices, the interferences drereit
law difference when the complex Hadamard matrix folloysure real or pure imaginary interferences. Therefore, when
a x3;, law difference. Therefore, it is expected that Fourialsing a linear decoder, complex Hadamard matrices perform
and Vandermonde matrices lead to worse results than compiter than Vandermonde or Fourier matrices whda small.
Hadamard matrices based on SU(2) group for small size. of Moreover, the performance of the complex Hadamard matrix

for L = 4 is very close to the ML decoder and the performance
V. SIMULATION RESULTS obtained withL = 256 is already reached witlh = 64 [15].

The simulations are carried out in a Rayleigh flat fadinghis result is the same whatever the choice of the number
channel environment well adapted to OFDM-like modulatiofif transmit antennas if the space diversity is exploited by
with Alamouti and Tarokh codes, MMSE equalizer and inteffansmitting symbols by several groups of transmit antsnna
leaving for different sizes of precoding matrices. In fabe alternatively.

MMSE equalizer provides the best results compared to theFigure 3 shows the performance of different OSTBC with
MRC or the ZF equalizer. Figure 2 shows the performandigear precoding forL = 256 and spectral efficiency; =

of the linear precoded Alamouti system with Vandermondé, bps/Hz. To obtain this spectral efficiency, a Binary PSK
Fourier and complex Hadamard based SU(2) matrices for diBPSK) is applied to the Alamouti code whereas QPSK is
ferent sizes of precoding matrices & 4 and256 representing applied to Tarokh code§s and G,. The results show that

a large scale for the linear precoding sizes) aid= 1. As the performance improves when linear precoding is applied
expected, owing to a higher diversity order, the perforneasfc whatever the OSTBC code because of an efficient exploitation
the linear precoded OSTBC scheme performs better than tféhe diversity. In fact, the gain on the BER Bt~ provided
sole Alamouti scheme. With = 256, whereF, V, H acronym Dby linear precoding is about 9.2 dB, 4.3 dB and 3.2 dB for
stands for Fourier, Vandermonde or Hadamard matrices, tlespectively the Alamouti, thgs and theG, Tarokh codes.
maximum diversity order is reached. There is no noticeableFigure 4 shows the performance of different OSTBC with
difference between these 3 different matrices for thisdarginear precoding forL = 256 and spectral efficiency = 3
size of precoding matrices. Moreover, one can see that tmqps/Hz. To obtain this spectral efficiency, a 8PSK is applied



transmissions in order to efficiently and simply exploit tida
temporal and frequency diversities depending on the space-
time-frequency channel characteristics.
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