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Space-Time Block Codes with Full Diversity
using Linear Precoding and Linear Receivers

Vincent Le Nir, Maryline Hélard,Member, IEEE

Abstract— In order to increase the diversity order of a multi-
antenna system at a moderate cost of complexity, one may choose
Orthogonal Space-Time Block Coding (OSTBC). In this paper,
OSTBC is combined with linear precoding matrices to improve
the space-time-frequency diversity. Different linear precoding
matrices based on either Fourier, Vandermonde or Hadamard
constructions are proposed where a simple linear de-precoder can
be chosen at the receiver part which performs very close to the
Maximum Likelihood (ML) decoder. The system is generalized
to different numbers of transmit antennas and different sizes
of precoding matrices. It is shown that the combined scheme
efficiently exploits the space-time-frequency diversity using a
linear decoder leading to an OSTBC with maximal diversity for
more than two antennas when a Zero Forcing (ZF) or when an
Minimum Mean Square Error (MMSE) equalizer is chosen.

I. I NTRODUCTION

Since the work of Foschini [1], there has been a huge
interest concerning Multiple Input Multiple Output (MIMO)
systems. The main result of MIMO systems is that the capacity
varies linearly with the minimum ofNt transmit andNr

receive antennas. Parallel to his work, Orthogonal Space-
Time Block Coding (OSTBC) was demonstrated to be a
good trade-off between performance and complexity to exploit
spatial diversity in multi-antenna systems. The initial OSTBC
proposed by Alamouti [2] for 2 transmit antennas is merely
decoded with a linear operation. Another advantage of the
Alamouti code is its rate equal to 1. Then, Tarokh [3] extended
OSTBC to 3 or 4 transmit antennas with linear decoding as
well, but resulting in lower 1/2 and 3/4-rate codes for any
complex constellation. Since, many studies were carried out
to find space-time codes with more than two antennas and rate
one, all resulting in Non-Orthogonal Space-Time Block Codes
(NOSTBC) [4, 5, 6, 7], thus requiring more complexity at the
receiver than linear decoders.

In parallel, linear precoding was demonstrated to efficiently
exploit time diversity for Single Input Single Output (SISO)
systems [8, 9] as well as MIMO systems including OSTBC
[10]. In [11], a system combining the NOSTBC proposed in
[4] with linear precoding is presented, but the complexity of its
Maximum Likelihood (ML) decoder varies exponentially with
the length of the precoding matrix. Linear precoding adapted
to space-time transmission in order to find new NOSTBC was
carried out in [12, 13, 14] but also using ML-like decoders.

In this paper, we generalize the scheme that we briefly
presented in [15] that consists of combining linear precod-
ing and OSTBC. We showed in [15] that the system using
Hadamard linear precoding matrices based on the Special
Unitary SU(2) group and a simple linear de-precoder offers
a good performance/complexity tradeoff and performs very
close to the ML decoder. The system conserves the initial rate
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of the OSTBC, i.e. 1 for the Alamouti code and 1/2 or 3/4
for Tarokh codes. In [15] and in this paper, we demonstrate
that the diversity of the system increases owing to linear
precoding applied in the time, frequency, or space domains
using several groups of transmit antennas alternatively. A
comparison between several linear precoding matrices based
on either Fourier, Vandermonde or Hadamard constructions
is provided. It is shown that this specific combination of
linear precoding and OSTBC results in an orthogonal system
providing full diversity.

First, the linear precoding matrices are described, i.e. the
Fourier, Vandermonde and complex Hadamard matrices, the
last one based on SU(2) construction. We demonstrate why
our system allows a simple linear de-precoder while other
NOSTBC based systems require ML-like decoders. Then, the
generalised scheme is presented, which can be adapted to var-
ious MIMO configurations with different numbers of transmit
antennas. It is shown that because of the chosen matrices
used for the linear precoding, a non-centered gaussian diversity
can be obtained for the detected symbols. This paper focuses
on the maximization of diversity and the minimization of
interference using linear precoding with a linear de-precoding
at the receiver part while the systems proposed in the literature
focus on the optimization of the minimal product distance of
the linear precoding at high Signal to Noise Ratio (SNR) using
an ML-like decoder. Finally, simulation results are given for
different sizes of precoding matrices confirming the theoretical
analysis.

For this study, uncorrelated frequency non-selective
Rayleigh fading and time invariance duringT symbol dura-
tions are assumed as well as perfect channel estimation at
the receiver side. The channel corresponds to a quasi-static
flat fading well adapted to Orthogonal Frequency Division
Multiplex OFDM-like modulations. Hence, the theoretical
channel response of the uncorrelated channels from transmit-
ting antennat to receiving antennar can be represented by
htr = ρtre

iθtr .

II. L INEAR PRECODING

In this section, the unitary linear precoding matrices de-
scribed are the Fourier, the Vandermonde and the complex
Hadamard matrices for a sizeL×L. Then, the state of the art
for linear precoding without OSTBC is given, focusing on the
constellation transmitted for different sizes of precoding ma-
trices. Finally, it is shown that most of the schemes proposed
in the literature are limited to small size precoding matrices
because of the use of an ML-like decoder.

A. Linear Precoding matrices

1) Fourier matrices:The linear precoding matrix obtained
with Fourier Transform matrix construction is:

Θ
FFT
L =

1√
L















1 1 1 . . . 1
1 w1 w2 . . . wL−1

1 w2 w4 . . . w2(L−1)

...
...

...
. . .

...
1 wL−1 w2(L−1) . . . w(L−1)(L−1)















(1)
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with w = e
2jπ

L .
2) Vandermonde matrices:The linear precoding matrix

obtained with Vandermonde matrix construction is:

Θ
V an
L = diag[1, α, α2, . . . , αL−1].ΘFFT

L (2)

Θ
V an
L =

1√
L















1 1 1 . . . 1
θ1 θ2 θ3 . . . θL−1

θ2
1 θ2

2 θ2
3 . . . θ2

L−1
...

...
...

...
θL−1
1 θL−1

2 θL−1
3 . . . θL−1

L−1















(3)

with θi = αwi = αe
2ijπ

L .
3) Complex Hadamard matrices based on SU(2) group:

The linear precoding based on the complex Hadamard con-
struction matrix is [15]:

Θ
Had
L =

√

2

L

[

ΘL/2 ΘL/2

ΘL/2 −ΘL/2

]

(4)

with L = 2n, n ∈ N
∗, n ≥ 2 and:

Θ2 =

[

ejθ1 . cos η ejθ2 . sin η
−e−jθ2 . sin η e−jθ1 . cos η

]

(5)

belonging to the Special Unitary group SU(2), therefore
det(Θ2) = 1 andΘ−1

2 = ΘH
2 .

B. State of the art

In [8, 9], the authors first used Vandermonde matrices as
linear precoding matrices for a SISO system in a Rayleigh
environment in order to increase the diversity of the global
system. In [16], this operation is seen as constellation expan-
sion. They demonstrated that in order to exploit the ultimate
shaping gain (1.53 dB), the constellation must be uniformly
distributed in a hypersphere. Indeed, the projection of a
uniform probability distribution over an L-sphere onto oneor
two dimensions is a non-uniform probability distribution that
approaches a Gaussian density as L increases. When using
Quadrature Amplitude Modulation (QAM) symbols equiprob-
ably distributed, the result of the projection over a sphere
of dimension L is a 2-D gaussian density when L is large.
This effect can be seen on Figures 1 (d) representing the
3-D gaussian density of linearly precoded Quadrature Phase
Shift Keying (QPSK) symbols by a complex Hadamard matrix
based on SU(2) group of sizeL = 256, which has the same
shape as Vandermonde matrix or Fourier matrix forL = 256.
Figure 1 (a) respresents linear precoded QPSK symbols with
a complex Hadamard matrix based on SU(2) group of size
L = 4. It can be demonstrated that Fourier matrices obtain
the same number of constellation points as complex Hadamard
matrices based on SU(2) group. On Figures 1 (b)(c), two
Vandermonde matrices of sizeL = 4 and 256 are used to
linearly precode QPSK symbols.
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(a) Hadamard L=4
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(b) Vandermonde L=4
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(c) Vandermonde L=256 (d) 3-D Hadamard L=256 distribution

Fig. 1. Transmitted constellations, linear precoded QPSK for L=4 and L=256
with Hadamard and Vandermonde matrices

C. Decoding

In [10, 12, 13, 14], an ML or spheric decoder is used in
order to retrieve the linear precoded information in several
space-time architectures because of the interference terms.
Thus, with a ML-like decoder, the maximum sizes are up to
L = 32 in a SISO environment [8] and up toL = 8 in a MIMO
environment [11]. However, in [9] the authors implemented
linear decoding based on the Minimum Square Error (MSE)
criterion with sizeL = 256 in a SISO environment. Similarly
in [15], we demonstrated that linear decoding provides good
performance in a MIMO environment using a specific linear
precoding and OSTBC. As shown in the sequel, the receiver
may merely consist of the transconjugate of the initial pre-
coding matrixΘ

H and a linear demapping according to the
chosen constellation.

III. L INEAR PRECODING ASSOCIATED WITHOSTBC

The space-time architecture applied to the precoded symbols
is an OSTBC scheme. Therefore, the transmission chain is
linear because the receiver has a linear decoding complexity.
In the following sections, an OSTBC description based on
channel representation and the STBC state of the art is given.
Then, the linear precoding with OSTBC is explained.

A. OSTBC representation

The rateR of OSTBC is defined as the ratio between the
number of transmit symbolsN and the number of symbol
durationsT necessary for their transmission.

With the 1-rate Alamouti code [2] forNt = 2 transmit and
Nr = 1 receive antennas can be represented as follows:

G2 =

[

s1 −s∗2
s2 s∗1

]

(6)
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Under the assumption that the fading coefficients are constant
over two consecutive symbol durations, the code is represented
by:

r = H.s + n (7)

wherer = [r1 r2]
T is the received signal over two consecutive

symbol durations,s = [s1 s2]
T is the transmitted signal,

n = [n1 n2]
T is the Additive White Gaussian Noise (AWGN),

H =

[

h1 h2

−h∗
2 h∗

1

]

(8)

is the equivalent channel matrix for the 2 successive symbol
durations over 2 antennas, andhi is the channel response of the
transmit antennai. The length of the channel representation
given by the number of rows ofH is Lc = 2. The decod-
ing step consists of applying the transpose conjugate of the
channel matrix to the equivalent received vector. The decoding
leads to:

ŝ = Λ.s + n
′ (9)

where ŝ = [ŝ1 ŝ2]
T is the estimated symbol vector after

decoding,Λ = H
H .H = λ.I2, where (.)H stands for the

transconjugate,I2 the identity 2x2 matrix,λ = |h1|2 + |h2|2
andn

′ = H
H .n.

This matrix representation can be extended to other OSTBC
such as the Tarokh codes [3]. ForG3, G4, H3 and H4 the
channel representationsH respectively are:

HG3
=









h1 −h2 −h3 0 h∗
1 −h∗

2 −h∗
3 0

h2 h1 0 −h3 h∗
2 h∗

1 0 −h∗
3

h3 0 h1 h2 h∗
3 0 h∗

1 h∗
2

0 h3 −h2 h1 0 h∗
3 −h∗

2 h∗
1









T

(10)

HG4
=









h1 −h2 −h3 −h4 h∗
1 −h∗

2 −h∗
3 −h∗

4

h2 h1 h4 −h3 h∗
2 h∗

1 h∗
4 −h∗

3

h3 −h4 h1 h2 h∗
3 −h∗

4 h∗
1 h∗

2

h4 h3 −h2 h1 h∗
4 h∗

3 −h∗
2 h∗

1









T

(11)

HH3
=







h1 0 h∗
2 −h3

2 −h∗

3

2
h3

2 −h∗

3

2

h2 0 −h∗
1

h3

2 −h∗

3

2
h3

2
h∗

3

2
h3√

2
h3√

2
0 0

h∗

1
+h∗

2√
2

0
h∗

1
−h∗

2√
2







T

(12)

HH4
=







h1 0 h∗
2

h4−h3

2 −h∗

3
+h∗

4

2
h3−h4

2 −h∗

3
+h∗

4

2

h2 0 −h∗
1

h3−h4

2 −h∗

3
+h∗

4

2
h3−h4

2
h∗

3
+h∗

4

2
h3+h4√

2
h3−h4√

2
0 0

h∗

1
+h∗

2√
2

0
h∗

1
−h∗

2√
2







T

(13)
The length of these channel representationsLc is equal to

8 for G3 andG4 and 7 forH3 andH4. The OSTBC decoding
gives the following result:

λ =

Nt
∑

i=1

|hi|2 (14)

This λ value applies to every OSTBC code.

B. State of the art

As Tarokh demonstrated that no orthogonal design exists
for 4 transmit antennas, 4 diversity order and rate 1 [3],
the research focused on NOSTBC. These codes can also be
expressed by (7) wherer = [r1 r2 r3 r4]

T is the received
signal ands = [s1 s2 s3 s4]

T the transmitted one. The total
transmit power isP . Each antenna transmits a symbol over one
symbol duration, therefore each antenna transmits symbolsat
a power ofP/4. The matrix representation described in III-
A can be extended to these NOSTBC schemes [4, 5, 6, 7].
For the NOSTBC proposed in [4] and [5] by Jafarkhani and
Tirkkonnen respectively,H is therefore a 4x4 matrix equal to:

H =

[

H1 H2

−H
∗
2 H

∗
1

]

andH =

[

H1 H2

H2 H1

]

(15)

with Hi the equivalent channel matrix for 2 successive symbol
durations over 2 antennas corresponding to (8). In the case of
the NOSTBC proposed in [4],Λ of formula (9) becomes a
non-orthogonal matrix of the form:

Λ = H
H .H =









a 0 0 b
0 a −b 0
0 −b a 0
b 0 0 a









(16)

wherea =
4
∑

i=1

|hi|2 andb = 2Re(h1h
∗
4 −h2h

∗
3). This scheme

needs an ML-like detector because of the intrinsic interference.
In [10], the authors propose to apply a linear precoding to
a non-orthogonal matrix [4] and to use a ML decoder at the
receiver part. The implementation complexity of these systems
increases exponentially with the size of the precoding matrix,
because they all require ML or similar decoders due to high
interference terms.

C. The new proposed scheme

In the 4-transmit antenna system that we proposed in [15],
the Alamouti OSTBC is chosen in order to keep the rate one
for the new proposed scheme. The Alamouti OSTBC is applied
alternatively to antennas 1 and 2 and then to antennas 3 and
4. Thus, the symbols are transmitted over the first group of
transmit antennas 1 and 2 with a powerP/2 over two symbol
durations when the other antennas are switched off. Then,
the other symbols are transmitted over the second group of
transmit antennas 3 and 4. Therefore, as for the precedent
NOSTBC codes for 4 antennas, the total transmit power per
symbol duration isP . We obtain the following equivalent
matrix:

H =

[

H1 0
0 H2

]

(17)

of size 4x4. At the reception, in (9) we getΛ = Λ4 =
H

H .H = diag(λ1, λ1, λ2, λ2) andλi = |h2i−1|2+ |h2i|2 with
i ∈ N

∗ leading to a 2 channel diversity order. So far, there is
no gain compared to the classical Alamouti scheme described
in [2].

Before being space-time coded, the symbols are prelim-
inarly linear precoded with aL × L unitary matrix based
on Hadamard construction. This linear precoding will have
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the effect of increasing the diversity order of the transmitted
symbols. UsingΘHad

L for L = 4 and applying the coefficients
η = π

4 , θ2 = θ1− π
2 , θ1 = 5π

4 , this leads to the SU(2) matrix:

Θ2 =
1

2

[

−1 − j −1 + j
1 + j −1 + j

]

(18)

The global transmission and reception system is described by:

A4 = Θ
H
4 .Λ4.Θ4 (19)

A4 =
1

2









λ1 + λ2 0 λ1 − λ2 0
0 λ1 + λ2 0 λ1 − λ2

λ1 − λ2 0 λ1 + λ2 0
0 λ1 − λ2 0 λ1 + λ2









(20)

The diagonal elements ofA4 are all equal to:

aii = 1
2

L=4
∑

l=1

|hl|2 ∀i ∈ [1 . . . 4] (21)

Thus, owing to linear precoding, the exploited channel diver-
sity order increases from 2 to 4. Moreover, the interference
terms are either null or equal to:

aik = 1
2 (

2
∑

l=1

|hl|2 −
4
∑

l=3

|hl|2) i, k ∈ [1 . . . 4]i6=k (22)

As shown in [15] and detailed in the part III-D, a simple
linear decoding can be applied at the receiver part when
linear precoding is associated with an OSTBC scheme like
the Alamouti code for several antenna configurations. In the
sequel, the generalisation of the described scheme is givenfor
several OSTBC and linear precoding matrices.

D. Generalisation of the proposed scheme

In the proposed system OSTBC is applied by blocks ofM
symbols multiple ofN according to the following equivalent
channel representationH of sizeLcM/N × M :

H =

























H1 0 . . . 0 . . . 0

0 H2
. . . 0 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . . Hj
. . . 0

0 . . . 0
. . .

. . . 0
0 . . . 0 . . . 0 HM/N

























(23)

with Hj the jth equivalent channel representation of the
OSTBC andLc the length of the channel representation of the
OSTBC with Nt antennas as defined in the part III-A. This
means thatHj of sizeLc×N is independant from the previous
or future blocks. These blocks can be applied either in the time
or in the frequency domain, requiring a channel constant over
T adjacent time symbols orT adjacent subcarriers. However,
these blocks can be applied in the space-time domain or
space-frequency domain, that means that a multiple of the
Nt transmit antennas (the total transmit antennasmNt with
1 ≤ m ≤ M/N antennas) can be used to send symbols
over a first group ofNt antennas while the other antennas
are switched off. Ifm ≥ 2, the following time or frequency
block will be sent on a different group of antennas, keeping

the orthogonality of the resulting code. For instance, withthe
Alamouti code, the channel matrix can represent the channel
matrix in either time or frequency domains using 2 transmit
antennas. This channel matrix can also represent the channel
matrix in the space-time or space-frequency domain using 4,
8 or more transmit antennas if only two transmit antennas are
sending symbols while the other transmit antennas remain idle.
However, the total transmit power should remain a constant
P . Therefore, each antenna of the first group ofNt antennas
will transmit at a power ofP/Nt while the antennas of the
other groups are switched off. For the following block, the
first group will be switched off and each antenna of the
following group will transmit at a power ofP/Nt. Therefore,
this system can be adapted in order to exploit the space, timeor
frequency domains depending on the channel characteristics.
At the reception,Λ in (9) becomes:

Λ = H
H .H = diag(Λ1, . . . ,Λj , . . . ,ΛM/N )

with Λj = λjIN
(24)

According to the OSTBC chosen, the diagonal elements of the
equivalent transmission/reception are:

λj =
Nt
∑

i=1

|hj
i |2 (25)

with j the time or spatial index of the decoded OSTBC block.
If an interleaving and de-interleaving operation is included, the
λj ’s are mixed up and the initial matrix becomes an equivalent
matrix Λ (9) with:

Λ = diag(λ1, λ2, . . . , λj−1, λj , . . . , λM−1, λM ) (26)

Before being space-time coded, the symbols are prelim-
inarly linear precoded with a unitary matrixΘL of size
L × L. Whatever the unitary matrices based on Fourier,
Vandermonde or complex Hadamard precoding matrices, the
different eigenvaluesλj provided by the OSTBC process are
added, providing full diversity on the diagonal terms. On
the other hand, these matrices provide differences between
eigenvalues on the non diagonal terms.

The transconjugate of the channelH
H is equivalent to

an Maximum Ratio Combining (MRC) equalizer. The diag-
onal terms have a diversity that tend towards a non-centered
gaussian law and interferences that tend towards a centered
gaussian law on the non-diagonal terms whenL increases in
a flat Rayleigh fading channel environment. Therefore, when
using an MRC equalizer with perfect channel estimation, the
global system is non-orthogonal.

With a ZF equalizer and an MMSE, theλ values become:

λ =

Nt
∑

i=1

|hi|2

Nt
∑

i=1

|hi|2
= 1 λ =

Nt
∑

i=1

|hi|2

Nt
∑

i=1

|hi|2+ 1

γ

(27)

whereγ is the Signal to Noise Ratio at the receive antenna.
When using a ZF equalizer with perfect channel estimation,

all the non diagonal terms are null. In order to avoid enhancing
the noise, it is preferable to choose an MMSE equalizer,
leading to very small interference terms and leading to a
global orthogonal system at high SNR. If we apply these
unitary matrices to the diagonal matrixΛL corresponding to
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the OSTBC coding and decoding process, the global linear
transmission/reception scheme is given by:

AL = Θ
−1
L .ΛL.ΘL = Θ

H
L .ΛL.ΘL (28)

The linear de-precoding consists of applyingΘ
H
L , keeping the

global transmission chain linear. The rate of the initial OSTBC
is conserved, i.e. one for the Alamouti code.

IV. FORMULATION WITH DIFFERENT LINEAR PRECODING

MATRICES

A general formulation of OSTBC combined with the spe-
cific linear precoding matrices such as the Vandermonde,
Fourier and complex Hadamard matrices is described.

A. Vandermonde Matrices and Fourier Transform Matrices

The global transmission/reception scheme with the Vander-
monde matrices is:

AL = Θ
V an−1

L .ΛL.ΘV an
L = Θ

FFT H

L .ΛL.ΘFFT
L (29)

Owing to equation (2), the global transmission/reception for-
mula of the Vandermonde and Fourier matrices is similar but
the transmitted constellation is different as shown in the part
II-A. The global formula can be rewritten as follows:

AL =
1

L

L
∑

i=1

λi.IL + J (30)

with IL the identity matrix of sizeL × L and J the matrix
of interference terms being differences between theseλl’s. As
Θ

FFT
L is a unitary matrix, all the diagonal elements ofAL

aii are equal to:

aii =
1

L

L
∑

l=1

λl ∀i ∈ [1 . . . L] (31)

while the interference terms are all sum of differences between
theseλl’s. One of these interference terms is:

aik = 1
L

L/2−1
∑

l=0

(−1)l(λ2l+1 + jλ2l+2)

i, k ∈ [1 . . . L]i6=k

(32)

The other terms of interference are also sum of differences
between eigenvalues and may be complex interferences. With
a linear precoding matrix based on Fourier Transform matrix
of sizeL = 4, the following Fourier matrix is obtained:

Θ
FFT
4 =

1

2









1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j









(33)

This leads to the following global hermitian circulant matrix:

A4 =
1

4









a b c b∗

b∗ a b c
c b∗ a b
b c b∗ a









(34)

with
a = λ1 + λ2 + λ3 + λ4

b = λ1 − λ3 − j(λ2 − λ4)
c = λ1 − λ2 + λ3 − λ4

(35)

For Vandermonde and Fourier matrices, the diagonal terms
follow a χ2

16 law when an Alamouti MRC equalizer is chosen
in a flat Rayleigh fading channel environment. The interfer-
ence term notedc follows a χ2

8 law difference andb follows
a χ2

4 law difference per dimension. If a ZF or an MMSE
equalizer is used, this leads to null or quasi-null interferences
respectively.

B. Complex Hadamard matrices based on SU(2) group

The global transmission/reception scheme with the complex
Hadamard matrices based on SU(2) group is represented by:

AL =
2

L

[

A
1
L/2 + A

2
L/2 A

1
L/2 − A

2
L/2

A
1
L/2 − A

2
L/2 A

1
L/2 + A

2
L/2

]

(36)

with
A

1
L/2 = Θ

HadH

L/2 .Λ1
L/2.Θ

Had
L/2

A
2
L/2 = Θ

HadH

L/2 .Λ2
L/2.Θ

Had
L/2

(37)

ΛL =

[

Λ
1
L/2 0

0 Λ
2
L/2

]

(38)

where
Λ

1
L/2 = diag(λ1, . . . , λL/2)

Λ
2
L/2 = diag(λL/2+1, . . . , λL)

(39)

in the case of interleaving. AsΘHad
L is a unitary matrix, all

the diagonal elements ofAL in equation (30) are equal to:

aii =
2

L

L/2−1
∑

l=0

cos2 η.λ2l+1+sin2 η.λ2l+2 ∀i ∈ [1 . . . L] (40)

while the interference terms are all difference between these
λl’s. One of these interference terms is:

aik = − 2
L cos η. sin η.e−j(θ1+θ2)

L/2−1
∑

l=0

(λ2l+1 − λ2l+2)

i, k ∈ [1 . . . L]i6=k

(41)
In [15] and in this paper, we found that the optimal Bit Error
Rate (BER) performance results are obtained with pure real
or pure imaginary interference, as for instance with theΘ2

matrix and coefficientsη = Π
4 , θ1 = 5Π

4 and θ2 = 3Π
4 .

These coefficients are fixed and do not depend on a channel
knowledge at the transmitter side. The reason why these
coefficients are optimal will be detailed at the end of this
chapter. UsingΘHad

L for L = 4 with the Alamouti scheme
with interleaving the following diagonal channel matrix is
obtained:

Λ4 = diag(λ1, λ2, λ3, λ4) (42)

The resulting matrix is then:

A4 =
1

4









a + b c + d a − b c − d
−c − d a + b −c + d a − b

a − b c − d a + b c + d
−c + d a − b −c − d a + b









(43)
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Fig. 2. Alamouti (Al.) associated without and with different linear precoding
matrices forη=2 bps/Hz compared to the AWGN channel

with
a = λ1 + λ2 b = λ3 + λ4

c = λ1 − λ2 d = λ3 − λ4
(44)

As for Vandermonde and Fourier matrices, the diagonal terms
follow a χ2

16 law applying an Alamouti MRC equalizer in a flat
Rayleigh fading channel environment. The interference terms
follow a χ2

8 law difference. With perfect channel estimation
and a ZF equalizer, the interference terms are null as well as
with an MMSE equalizer at high SNR.

Applying an Alamouti MRC equalizer in a flat Rayleigh
fading channel environment with Vandermonde, Fourier or
complex Hadamard linear precoding matrices of sizeL × L,
the diagonal elements follow aχ2

4L law. However, the non-
diagonal terms are different. Indeed, some of the interference
terms of Fourier and Vandermonde matrices follow aχ2

L

law difference when the complex Hadamard matrix follow
a χ2

2L law difference. Therefore, it is expected that Fourier
and Vandermonde matrices lead to worse results than complex
Hadamard matrices based on SU(2) group for small size ofL.

V. SIMULATION RESULTS

The simulations are carried out in a Rayleigh flat fading
channel environment well adapted to OFDM-like modulation
with Alamouti and Tarokh codes, MMSE equalizer and inter-
leaving for different sizes of precoding matrices. In fact,the
MMSE equalizer provides the best results compared to the
MRC or the ZF equalizer. Figure 2 shows the performance
of the linear precoded Alamouti system with Vandermonde,
Fourier and complex Hadamard based SU(2) matrices for dif-
ferent sizes of precoding matrices (L = 4 and256 representing
a large scale for the linear precoding sizes) andNr = 1. As
expected, owing to a higher diversity order, the performance of
the linear precoded OSTBC scheme performs better than the
sole Alamouti scheme. WithL = 256, whereF, V, H acronym
stands for Fourier, Vandermonde or Hadamard matrices, the
maximum diversity order is reached. There is no noticeable
difference between these 3 different matrices for this large
size of precoding matrices. Moreover, one can see that for

Eb/N0

B
E

R AWGN

Al., L=256

G3x1, L=256

G4x1, L=256

Al.

G3x1

G4x1

1.0E-04

1.0E-01

1E-03

1E-02

0.0 dB 16.0 dB5 dB 10 dB

Fig. 3. Alamouti (Al.) and Tarokh (G3x1, G4x1) associated without and with
linear precoding matrices forη=1 bps/Hz compared to the AWGN channel

L = 4 the performance of the Vandermonde matrix and
α = Π

4 is slighty better than the performance of the Fourier
matrix although these two matrices have the same global
transmission/reception equations (34) and (35). Therefore, this
improvement is only due to the shaping gain of the transmitted
constellation forL = 4 as seen in Figure 1, because the
number of constellation points with a Vandermonde matrix
is higher than the number of constellation points with a
Fourier matrix. One can see that forL = 4 the system
with the complex Hadamard matrix outperforms the systems
with Vandermonde or Fourier matrices. This can be explained
by the complex interference terms (34)(35) for Vandermonde
and Fourier matrices and pure real or imaginary interferences
(43)(44) for complex Hadamard matrices. However, when
using complex Hadamard matrices, the interferences are either
pure real or pure imaginary interferences. Therefore, when
using a linear decoder, complex Hadamard matrices perform
better than Vandermonde or Fourier matrices whenL is small.
Moreover, the performance of the complex Hadamard matrix
for L = 4 is very close to the ML decoder and the performance
obtained withL = 256 is already reached withL = 64 [15].
This result is the same whatever the choice of the number
of transmit antennas if the space diversity is exploited by
transmitting symbols by several groups of transmit antennas
alternatively.

Figure 3 shows the performance of different OSTBC with
linear precoding forL = 256 and spectral efficiencyη =
1 bps/Hz. To obtain this spectral efficiency, a Binary PSK
(BPSK) is applied to the Alamouti code whereas QPSK is
applied to Tarokh codesG3 and G4. The results show that
the performance improves when linear precoding is applied
whatever the OSTBC code because of an efficient exploitation
of the diversity. In fact, the gain on the BER at10−4 provided
by linear precoding is about 9.2 dB, 4.3 dB and 3.2 dB for
respectively the Alamouti, theG3 and theG4 Tarokh codes.

Figure 4 shows the performance of different OSTBC with
linear precoding forL = 256 and spectral efficiencyη = 3
bps/Hz. To obtain this spectral efficiency, a 8PSK is applied
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Fig. 4. Alamouti (Al.) and Tarokh (H3x1, H4x1) associated without and with
linear precoding matrices forη=3 bps/Hz compared to the AWGN channel

to the Alamouti code, whereas 16QAM is applied to Tarokh
codesH3 andH4. Contrary toη = 1 bps/Hz, the Alamouti
code performs better than Tarokh codes with linear precoding
L = 256 for η = 3 bps/Hz. This is due to the 16QAM
constellation of the Tarokh codes less robust than 8PSK. For
η > 1 bps/Hz, the Alamouti outperforms Tarokh codes with
linear precoding owing to its larger rate allowing a more robust
modulation to provide the same spectral efficiency. Similar
conclusions have been drawn for OSTBC applied to Multi-
Carrier Code Division Multiple Access (MC-CDMA) [17]
confirming the analogy between single user linear precoded
OSTBC and multi-user multicarrier OSTBC systems [10].

VI. CONCLUSION

The proposed combination of linear precoding and OSTBC
applied by block ofNt antennas overmNt total transmit
antennas leads to an efficient exploitation of space-time-
frequency diversity. We have demonstrated that this diversity
increases with the length of the precoding matrix at a linear
cost of complexity for the decoder. We have shown that unitary
matrices lead to a maximization of the diversity order for
the detected symbols and a minimization of the interference
terms. With a ZF equalizer or with an MMSE equalizer, these
interference terms are null or quasi-null when perfect channel
estimation is performed. Thus, a simple linear decoder is
a very good performance/complexity tradeoff. Moreover, the
system described can be applied with other OSTBC codes
and several antenna configurations, keeping the initial OSTBC
rate as for instance the rate 1 for the Alamouti code and the
rate 1/2 or 3/4 for the Tarokh codes whatever the number of
transmit antennas and the size of the linear precoding matrix.
The complex Hadamard matrix provides the best results for
small size ofL owing to the specific low interference terms.
The three studied matrices provide the same performance due
to the gaussian laws which have been reached whenL is large.
Simulation results with the specific linear precoders using
OSTBC can be easily adapted to multi-carrier modulations.
Therefore, these precoders can be applied to various MIMO

transmissions in order to efficiently and simply exploit spatial,
temporal and frequency diversities depending on the space-
time-frequency channel characteristics.
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